Machining of Bio-Implant Materials Using WEDM and Optimization of Process Parameters

  • P. HemaEmail author
  • J. Mallikarjuna Rao
  • C. Eswara Reddy
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Nonconventional machining is one of the revolutions in present manufacturing scenario. Among various machining techniques, Wire Electrical Discharge Machining (WEDM) is being used to machine biomaterials applied in medical field to machine suitable implant limbs in human body. An attempt is made in the present work to machine Mg AZ31b and SS304 biomaterials on WEDM, with an objective to optimize process parameters. Machining uses brass electrode wire and distilled water as dielectric fluid. Machining consists of linear cut and circular cut by considering Taguchi design of experiments. Input parameters are pulse-on time, pulse-off time, and wire feed. The output consists of Material Removal Rate (MRR), Surface Roughness (SR), and Kerf. Experimental results are validated with antlion optimization technique for optimization of process parameters. Regression analysis is used for validation.


WEDM Taguchi design of experiments Antlion optimization Biomaterials MRR SR Kerf 


  1. 1.
    Niinomi, M.: Recent metallic materials for biomedical applications. Metall. Mater. Trans. 33A, 477–485 (2002)CrossRefGoogle Scholar
  2. 2.
    Klocke, F.M., Schwade, M., Klink, A., Kopp, A.: EDM machining capabilities of Magnesium (Mg) alloy WE43 for medical applications. Procedia Eng. 19, 190–195 (2011)CrossRefGoogle Scholar
  3. 3.
    Klocke, F., Schwade, M., Klink, A., Veselovac, D.: Influence of electro discharge machining of biodegradable magnesium on the biocompatibility. In: The First CIRP Conference on Bio-manufacturing, Procedia CIRP-5, pp. 88–93 (2013)CrossRefGoogle Scholar
  4. 4.
    Hsu, C.H., Huang, K.H., Lin, Y.H.: Microstructure and wear performance of Arc-deposited Ti-N-O coatings on AISI 304 Stainless Steel. Wear 306(1–2), 97–102 (2013)CrossRefGoogle Scholar
  5. 5.
    Abdul Rani, M.A., Razak, M.A., Littlefair, G.: Improving EDM process on AZ31Mg Alloy towards sustainable biodegradable implant manufacturing. Procedia Manuf. 19, 190–195 (2017)Google Scholar
  6. 6.
    Raju, P., Sarcar, M.M.M., Satyanarayana, B.: Optimization of wire electrical discharge machining parameters for surface roughness on 316 L stainless steel using full factorial experimental design. Procedia Mater. Sci. 5, 1670–1676 (2014)CrossRefGoogle Scholar
  7. 7.
    Seyedal, M.: The ant Lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)CrossRefGoogle Scholar
  8. 8.
    Chengal Reddy, V., Deepthi, N., Jayakrishna, N.: Multiple response optimization of wire EDM on Aluminum HE30 by using grey relational analysis. Mater. Today Proc. 2, 2548–2554 (2015)CrossRefGoogle Scholar
  9. 9.
    Bharathi, P., Tummalapenta, G.L.P., Srinivasa Rao, G., Nageswara Rao B.G.: Optimum WEDM process parameters of SS304 using Taguchi method. Int. J. Ind. Manuf. Syst. Eng. 1(3), 69–72 (2016)Google Scholar
  10. 10.
    Rajesh Kanna, S.K., Sethuramalingam, P.: Stainless steel 316 wire EDM process parameters optimization by using Taguchi method. Int. J. Emerg. Res. Manag. Technol. 6(2), 69–73 (2017)CrossRefGoogle Scholar
  11. 11.
    Razak, M.A., Abdul Rani, A.M., Rao, T.V.V.L.N., Pedapati, S.R., Kamal, S.: Electrical discharge machining on biodegradable AZ31 magnesium alloy using Taguchi method. In: 4th International Conference on Process Engineering and Advanced Materials, Procedia Eng. 148, 916–922 (2016)CrossRefGoogle Scholar
  12. 12.
    Manish, S., Rahul, S., Abhinav, Gurupreet, S., Prabhat, M., Amit, S.: Optimizations of machining parameter in wire EDM for 316L Stainless Steel by using Taguchi method, Anova, and grey analysis. Int. J. Mech. Eng. Technol. 7, 307–320 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSV UniversityTirupatiIndia

Personalised recommendations