Realization of Green Manufacturing Using Citric Acid Electrolyte for WC–Co Alloy Micro-tool Fabrication in Micro-WECM

  • Abhijeet Sethi
  • Biswesh Ranjan Acharya
  • Pranai Kumar
  • Rajib Chakraborty
  • Partha SahaEmail author
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


This paper promotes green manufacturing by utilizing the environment-friendly electrolyte of citric acid for tungsten carbide alloy (WC–Co) micro-tool fabrication through micro-wire-electro chemical machining (WECM) process. The electrochemical dissolution behavior of WC–Co in different concentrations of citric acid has been investigated through open-circuit potentials and polarization curves obtained from cyclic voltammetry analysis. Response surface methodology(RSM) technique has been utilized to study the micro-WECM process characteristics and the influence of significant process parameters like electrolyte concentration, applied voltage, and reciprocating speed has been studied by analysis of variance (ANOVA). Moreover, optimization of machining parameters has been done through desirability function approach to maximize the MRR and the optimized values are found to be 0.25 M electrolyte concentration, 15 V applied voltage and 5.31 µm/s reciprocating speed. Finally, a confirmation experiment has been conducted to fabricate a micro-tool of 111.2 µm diameter in the citric acid electrolyte.


Micro-wire-electrochemical machining Citric acid Tungsten carbide alloy Green manufacturing Cyclic voltammetry 


  1. 1.
    Mahdavinejad, R.A., Mahdavinejad, A.: ED machining of WC–Co. J. Mater. Process. Technol. 162, 637–643 (2005)Google Scholar
  2. 2.
    Jahan, M.P., Rahman, M., Wong, Y.S.: A review on the conventional and micro-electrodischarge machining of tungsten carbide. Int. J. Mach. Tools Manuf. 51(12), 837–858 (2011)CrossRefGoogle Scholar
  3. 3.
    Bozzini, B., De Gaudenzi, G.P., Fanigliul, A., Mele, C.: Electrochemical oxidation of WC in acidic sulphate solution. Corros. Sci. 46(2), 453–469 (2004)CrossRefGoogle Scholar
  4. 4.
    Lim, H.S., Wong, Y.S., Rahman, M., Lee, M.E.: A study on the machining of high-aspect ratio micro-structures using micro-EDM. J. Mater. Process. Technol. 140(1–3), 318–325 (2003)CrossRefGoogle Scholar
  5. 5.
    Masuzawa, T., Fujino, M., Kobayashi, K., Suzuki, T., Kinoshita, N.: Wire electro-discharge grinding for micro-machining. CIRP Ann.-Manuf. Technol. 34(1), 431–434 (1985)CrossRefGoogle Scholar
  6. 6.
    Lohrengel, M.M., Rataj, K.P., Schubert, N., Schneider, M., Höhn, S., Michaelis, A., Schubert, A.: Electrochemical machining of hard metals–WC/Co as example. Powder Metall. 57(1), 21–30 (2014)CrossRefGoogle Scholar
  7. 7.
    Choi, S.H., Ryu, S.H., Choi, D.K., Chu, C.N.: Fabrication of WC micro-shaft by using electrochemical etching. Int. J. Adv. Manuf. Technol. 31(7–8), 682–687 (2007)CrossRefGoogle Scholar
  8. 8.
    Shibuya, N., Ito, Y., Natsu, W.: Electrochemical machining of tungsten carbide alloy micro-pin with NaNO3 solution. Int. J. Precis. Eng. Manuf. 13(11), 2075–2078 (2012)CrossRefGoogle Scholar
  9. 9.
    Bard, A.J., Faulkner, L.R.: Electrochemical Methods, 2nd edn, p. 669. Wiley, New York (2001)Google Scholar
  10. 10.
    El-Taweel, T.A., Gouda, S.A.: Performance analysis of wire electrochemical turning process—RSM approach. Int. J. Adv. Manuf. Technol. 53(1–4), 181–190 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations