Bactericidal Nanostructured Titanium Surface Through Thermal Annealing

  • D. Patil
  • M. K. Wasson
  • V. Perumal
  • S. AravindanEmail author
  • P. V. Rao
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Inspired from nature, the antibacterial titanium (Ti6Al4V) alloy surface is developed through thermal annealing at 750 °C for 15 min. The titanium sample was coated with 5 nm thickness silver film using DC sputter coating and the thermal annealing was carried out in two different annealing environments (atmospheric and argon gas environment). The annealed samples were characterized through field-emission scanning electron microscope (FESEM). The formation of nanostructured topography on the annealed samples depends on the annealing environment. The polygonal-shaped surface structure is observed when annealed in atmospheric condition, and nanospikes were seen on titanium surface after annealed in an argon environment. The X-ray diffraction (XRD) analysis was carried out in order to investigate the phase formation during annealing. Plate counting method was used to study the bactericidal capability of modified titanium surfaces. The modified titanium surface in argon gas environment has shown better bactericidal property compared to surface annealed in an atmospheric environment. The physical contact killing mechanism of nanospike with the bacterial cell is dominant on the nanospike-structured titanium surface.


DC sputtering Thermal annealing Surface topography Bactericidal surface Biofilm 


  1. 1.
    Alka, J., Hesam, S., Asha, M., Prasad, K.D.V.Y.: Biomimicking nano and microstructured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15(64), 64–84 (2017).
  2. 2.
    Australian Orthopaedic Association.: Hip, knee and shoulder arthroplasty: annual report. In: Australian Orthopedic Association National Joint Replacement Registry (2016).
  3. 3.
    Jenny, A.L., Krystyn, J.V., Michael, F.R.: Design of antibacterial surfaces and interfaces: polyelectrolyte multilayers as a multifunctional platform. Macromolecules 42(22), 8573–8586 (2009). Scholar
  4. 4.
    Gianluigi, F., Annarita, F., Stefania, G., Luciana, P., Mahendra, R., Giancarlo, M., Massimiliano, G.: Silver nanoparticles as potential antibacterial agents. Molecules 20(5), 8856–8874 (2015). Scholar
  5. 5.
    Patil, D., Wasson, M.K., Aravindan, S., Perumal, V., Rao, P.V.: Fabrication of silver nanoparticles-embedded antibacterial polymer surface through thermal annealing and soft molding technique. Mater. Res. Express 6(4), 045010 (2018). Scholar
  6. 6.
    Aaron, E., Russell, J.C., Elena, P.I.: Nano-structured antimicrobial surfaces: from nature to synthetic analogues. J. Colloid Interface Sci. 508, 603–616 (2017). Scholar
  7. 7.
    Kelleher, S.M., Habimana, O., Lawler, J., Reilly, B.O., Daniels, S., Casey, E., Cowley, A.: Cicada wing surface topography: an investigation into the bactericidal properties of nanostructural features. ACS Appl. Mater. Interfaces 8(24), 14966–14974 (2016). Scholar
  8. 8.
    Demetrescu, I., Ionita, D., Pirvu, C., Portan, D.: Present and future trends in TiO2 nanotubes elaboration, characterization and potential applications. Mol. Cryst. Liquid Cryst. 521, 195–203 (2010). Scholar
  9. 9.
    Shenglin, M., Huaiyu, W., Wei, W., Liping, T., Haobo, P., Changshun, R., Qianli, M., Mengyuan, L., Huiling, Y., Liang, Z., Yicheng, C., Yumei, Z., Lingzhou, Z., Paul, K.C.: Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titaniananotubes. Biomaterials 35(14), 4255–4265 (2014). Scholar
  10. 10.
    Patil, D., Sharma, A., Aravindan, S., Rao, P.V.: Development of hot embossing setup and fabrication of ordered nanostructures on large area of polymer surface for antibiofouling application. Micro Nano Lett. 13, 1–5 (2018). Scholar
  11. 11.
    Huan, H., Vince, S.S., Stacey, M.G., Sungcheol, K., Minhua, L., Pablo, M., Gustavo, A.S.: Bio-inspired silicon nanospikes fabricated by metal-assisted chemical etching for antibacterial surfaces. Appl. Phys. Lett. 111(25), 253701, pp. 1–5 (2017). Scholar
  12. 12.
    Terje, S., Angela, H.N., Bo, S.: Bactericidal nanospike surfaces via thermal oxidation ofTi alloy substrates. Mater. Lett. 167, 2–26 (2016). Scholar
  13. 13.
    Zhu, Y., Cao, H., Qiao, S., Wang, M., Gu, Y., Luo, H., Meng, F., Liu, X., Lai, H.: Hierarchical micro/nanostructured titanium with balanced actions to bacterial and mammalian cells for dental implants. Int. J. Nanomed. 10, 6659–6674 (2015). Scholar
  14. 14.
    Xinsheng, P., Aicheng, C.: Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone. J. Mater. Chem. 14, 2542–2548 (2004). Scholar
  15. 15.
    Alka, J., Hesam, S., Asha, M., Prasad, K.D.V.Y.: Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnol. 15, 64–84 (2017). Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of TechnologyNew DelhiIndia
  2. 2.Kusuma School of Biological SciencesIndian Institute of TechnologyNew DelhiIndia

Personalised recommendations