Characterization of Cutting Edge Radius of a Single Crystal Diamond Tool by Atomic Force Microscopy

  • Akhilesh Gupta
  • G. GanesanEmail author
  • Sonal Sonal
  • A. S. Rao
  • Rakesh G. Mote
  • R. Balasubramaniam
Conference paper
Part of the Lecture Notes on Multidisciplinary Industrial Engineering book series (LNMUINEN)


Single crystal diamond (SCD) is the ideal tool material in ultra-precision machining because of its high hardness, wear resistance, chemical stability, and the ability to sharpen the cutting edge in nanometers. The sub-micron level in the cutting edge profile could affect the accuracy of the fabricated surfaces, since cutting edge radii strongly influence the specific cutting energy, cutting forces, cutting temperature, residual stress in the workpiece. Therefore, cutting edge profile of an SCD tool should be checked periodically. The measurements of cutting edge radii of SCD tools are very difficult because of their geometric features (angles, radius... etc) and their dimensions in the nanometric level. This paper deals with various methods of cutting edge characterization of SCD tool by Atomic Force Microscopy (AFM). The change to measurement of the cutting edge radii has been done based on the methodology of the least square circle fit over cutting edge radius with error minimization in the calculation and determined iteratively.


Atomic force microscope (AFM) Single crystal diamond tool (SCD) Cutting edge radius Least square method (LSM) 



The authors gratefully acknowledge the support and grant provided for this work by the Board of Research in Nuclear Sciences (BRNS), India via project no. 34/14/06/2015/BRNS.


  1. 1.
    Arif, M., Rahman, M., San, W.Y.: A study on the effect of tool-edge radius on critical machining characteristics in the ultra-precision milling of tungsten carbide. Int. J. Adv. Manuf. Technol. 67(5–8), 1257–1265 (2013)CrossRefGoogle Scholar
  2. 2.
    Li, X.P., Rahman, M., Liu, K., Neo, K.S., Chan, C.C.: Nano-precision measurement of diamond tool edge radius for wafer fabrication. J. Mater. Process. Technol. 140(1–3 SPEC), 358–362 (2003)CrossRefGoogle Scholar
  3. 3.
    Yue, X., Xu, M., Du, W., Chu, C.: Effect of cutting edge radius on surface roughness in diamond tool turning of transparent MgAl2O4 spinel ceramic. Opt. Mater. (Amst) 71, 129–135 (2017)CrossRefGoogle Scholar
  4. 4.
    Zhao, T., Zhou, J.M., Bushlya, V., Ståhl, J.E.: Effect of cutting edge radius on surface roughness and tool wear in hard turning of AISI 52100 steel. Int. J. Adv. Manuf. Technol. 91(9–12), 3611–3618 (2017)CrossRefGoogle Scholar
  5. 5.
    Asai, S., Taguchi, Y., Horio, K., Kasai, T., Kobayashi, A.: Measuring the very small cutting edge radius for a diamond tool using a new kind of SEM having two detectors. Ann. CIRP 39(l), 85–88 (1990)CrossRefGoogle Scholar
  6. 6.
    Drescher, J.: Scanning electron microscopic technique for imaging a diamond tool edge. Precis. Eng. 15(2), 112–114 (1993)CrossRefGoogle Scholar
  7. 7.
    Li, Z.Q., Sun, T., Li, P., Zhao, X.S., Dong, S.: Measuring the nose roundness of diamond cutting tools based on atomic force microscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. 27(3), 1394 (2009)CrossRefGoogle Scholar
  8. 8.
    Umbach, D., Jones, K.N.: A few methods for fitting circles to data. IEEE Trans. Instrum. Meas. XX, 5 (2000)Google Scholar
  9. 9.
    Denkena, B., Biermann, D.: Cutting edge geometries. CIRP Ann. Manuf. Technol. 63(2), 631–653 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Akhilesh Gupta
    • 1
  • G. Ganesan
    • 2
    Email author
  • Sonal Sonal
    • 2
  • A. S. Rao
    • 1
  • Rakesh G. Mote
    • 2
  • R. Balasubramaniam
    • 3
  1. 1.Department of Mechanical EngineeringVeermata Jijabai Technological InstituteMatunga, MumbaiIndia
  2. 2.Department of Mechanical EngineeringIndian Institute of Technology BombayMumbaiIndia
  3. 3.Bhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations