Advertisement

Mycobacterial Methyltransferases: Significance in Pathogenesis and Virulence

  • Sonam Grover
  • Rishabh Gangwar
  • Salma Jamal
  • Sabeeha Ali
  • Khairun Nisaa
  • Nasreen Z. Ehtesham
  • Seyed Ehtesham HasnainEmail author
Chapter

Abstract

Mycobacterium tuberculosis (M.tb) is a pathogen of incredible international prominence owing to its persistence for long duration inside human host in both active and latent form, complex eradication methods and imposing long-term treatment procedures. The mechanisms employed by M.tb to adjust and survive inside extreme host environment and to evade the immune system of host need to be explored in greater depth in order to enable the rational design of novel treatment strategies. Methylation of biomolecules plays a significant role in almost every kingdom of life but has not been extensively addressed in the case of M.tb. The genome of M.tb codes for 121 methyltransferases (MTases) in spite of the reductive evolution of its genome. In the present chapter, we will discuss in detail about various MTases modifying DNA, RNA, protein, mycolic acid and other biomolecules of M.tb along with the host. This will also shed light on how methylation is implicated in virulence and influences the mechanism of pathogenesis of M.tb.

Keywords

Methyltransferases Mycolic acid Epigenetic regulation Drug resistance 

References

  1. Barkan D, Hedhli D, Yan H-G, Huygen K, Glickman MS (2012) Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 80(6):1958–1968.  https://doi.org/10.1128/iai.00021-12CrossRefPubMedPubMedCentralGoogle Scholar
  2. Barry CE, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y (1998) Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res 37(2):143–179.  https://doi.org/10.1016/S0163-7827(98)00008-3CrossRefPubMedGoogle Scholar
  3. Belley A, Alexander D, Di Pietrantonio T, Girard M, Jones J, Schurr E, Liu J, Sherman DR, Behr MA (2004) Impact of methoxymycolic acid production by Mycobacterium bovis BCG vaccines. Infect Immun 72(5):2803–2809.  https://doi.org/10.1128/iai.72.5.2803-2809.2004CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhatt A, Fujiwara N, Bhatt K, Gurcha SS, Kremer L, Chen B, Chan J, Porcelli SA, Kobayashi K, Besra GS, Jacobs WR (2007) Deletion of kasB in Mycobacterium tuberculosis causes loss of acid-fastness and subclinical latent tuberculosis in immunocompetent mice. Proc Natl Acad Sci 104(12):5157–5162.  https://doi.org/10.1073/pnas.0608654104CrossRefPubMedGoogle Scholar
  5. Buriankova K, Doucet-Populaire F, Dorson O, Gondran A, Ghnassia JC, Weiser J, Pernodet JL (2004) Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 48(1):143–150CrossRefGoogle Scholar
  6. Bussiere DE, Muchmore SW, Dealwis CG, Schluckebier G, Nienaber VL, Edalji RP, Walter KA, Ladror US, Holzman TF, Abad-Zapatero C (1998) Crystal structure of ErmC’, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37(20):7103–7112.  https://doi.org/10.1021/bi973113cCrossRefPubMedGoogle Scholar
  7. Campbell JL, Kleckner N (1990) E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62(5):967–979CrossRefGoogle Scholar
  8. Casadesus J, Low D (2006) Epigenetic gene regulation in the bacterial world. Microbiol Mol Biol Rev 70(3):830–856.  https://doi.org/10.1128/MMBR.00016-06CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27(1):393–422.  https://doi.org/10.1146/annurev.immunol.021908.132703CrossRefPubMedPubMedCentralGoogle Scholar
  10. Daffé M, Draper P (1998) The envelope layers of Mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39:131–203CrossRefGoogle Scholar
  11. Daffé M, Lanéelle MA, Lacave C (1991) Structure and stereochemistry of mycolic acids of Mycobacterium marinum and Mycobacterium ulcerans. Res Microbiol 142(4):397–403.  https://doi.org/10.1016/0923-2508(91)90109-NCrossRefPubMedGoogle Scholar
  12. Danielson SJ, Gray GR (1982) Structures of the two homologous series of dialkene mycolic acids from Mycobacterium smegmatis. J Biol Chem 257(20):12196–12203PubMedGoogle Scholar
  13. Dos Vultos T, Mestre O, Tonjum T, Gicquel B (2009) DNA repair in Mycobacterium tuberculosis revisited. FEMS Microbiol Rev 33(3):471–487.  https://doi.org/10.1111/j.1574-6976.2009.00170.xCrossRefPubMedGoogle Scholar
  14. Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M (2000) Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 36(3):630–637.  https://doi.org/10.1046/j.1365-2958.2000.01882.xCrossRefPubMedGoogle Scholar
  15. George KM, Yuan Y, Sherman DR, Barry CE (1995) The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis: identification and functional analysis of CMAS-2. J Biol Chem 270(45):27292–27298.  https://doi.org/10.1074/jbc.270.45.27292CrossRefPubMedGoogle Scholar
  16. Glickman MS, Cox JS, Jacobs WR Jr (2000) A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell 5(4):717–727.  https://doi.org/10.1016/S1097-2765(00)80250-6CrossRefPubMedGoogle Scholar
  17. Glickman MS, Cahill SM, Jacobs WR (2001) The Mycobacterium tuberculosis cmaA2 gene encodes a mycolic acid trans-cyclopropane synthetase. J Biol Chem 276(3):2228–2233.  https://doi.org/10.1074/jbc.C000652200CrossRefPubMedGoogle Scholar
  18. Gorna Alina E, Bowater Richard P, Dziadek J (2010) DNA repair systems and the pathogenesis of Mycobacterium tuberculosis: varying activities at different stages of infection. Clin Sci 119(5):187–202.  https://doi.org/10.1042/cs20100041CrossRefPubMedGoogle Scholar
  19. Grogan DW, Cronan JE (1997) Cyclopropane ring formation in membrane lipids of bacteria. Microbiol Mol Biol Rev 61(4):429–441PubMedPubMedCentralGoogle Scholar
  20. Grover S, Gupta P, Kahlon PS, Goyal S, Grover A, Dalal K, Sabeeha, Ehtesham NZ, Hasnain SE (2016) Analyses of methyltransferases across the pathogenicity spectrum of different mycobacterial species point to an extremophile connection. Mol BioSyst 12(5):1615–1625.  https://doi.org/10.1039/c5mb00810gCrossRefPubMedGoogle Scholar
  21. Gupta A, Kumar PH, Dineshkumar TK, Varshney U, Subramanya HS (2001) Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J Mol Biol 312(2):381–391.  https://doi.org/10.1006/jmbi.2001.4935CrossRefPubMedGoogle Scholar
  22. Hemavathy KC, Nagaraja V (1995) DNA methylation in mycobacteria: absence of methylation at GATC (Dam) and CCA/TGG (Dcm) sequences. FEMS Immunol Med Microbiol 11(4):291–296CrossRefGoogle Scholar
  23. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H (2008) Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci 105(10):3963–3967.  https://doi.org/10.1073/pnas.0709530105CrossRefPubMedGoogle Scholar
  24. Hyatt DR, ter Huurne AA, van der Zeijst BA, Joens LA (1994) Reduced virulence of Serpulina hyodysenteriae hemolysin-negative mutants in pigs and their potential to protect pigs against challenge with a virulent strain. Infect Immun 62(6):2244–2248PubMedPubMedCentralGoogle Scholar
  25. Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2’-O-methylations in 16S and 23S rRNAs. Mol Cell 23(2):173–182.  https://doi.org/10.1016/j.molcel.2006.05.044CrossRefPubMedGoogle Scholar
  26. Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM, Luscombe NM, Seshasayee AS (2012) Genomics of DNA cytosine methylation in Escherichia coli reveals its role in stationary phase transcription. Nat Commun 3:886.  https://doi.org/10.1038/ncomms1878CrossRefPubMedGoogle Scholar
  27. Kapopoulou A, Lew JM, Cole ST (2011) The Mycobrowser portal: a comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis 91(1):8–13.  https://doi.org/10.1016/j.tube.2010.09.006CrossRefPubMedGoogle Scholar
  28. Kumar A, Saigal K, Malhotra K, Sinha KM, Taneja B (2011) Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. J Biol Chem 286(22):19652–19661.  https://doi.org/10.1074/jbc.M110.200428CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kumar A, Kumar S, Taneja B (2014) The structure of Rv2372c identifies an RsmE-like methyltransferase from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr 70(Pt 3):821–832.  https://doi.org/10.1107/S1399004713033555CrossRefPubMedGoogle Scholar
  30. Kurthkoti K, Varshney U (2012) Distinct mechanisms of DNA repair in mycobacteria and their implications in attenuation of the pathogen growth. Mech Ageing Dev 133(4):138–146.  https://doi.org/10.1016/j.mad.2011.09.003CrossRefPubMedGoogle Scholar
  31. Lacave C, Lanéelle MA, Daffé M, Montrozier H, Rols MP, Asselineau C (1987) Structural and metabolic study of the mycolic acids of Mycobacterium fortuitum. Eur J Biochem 163(2):369–378.  https://doi.org/10.1111/j.1432-1033.1987.tb10809.xCrossRefPubMedGoogle Scholar
  32. Laval F, Haites R, Movahedzadeh F, Lemassu A, Wong CY, Stoker N, Billman-Jacobe H, Daffé M (2008) Investigating the function of the putative mycolic acid methyltransferase UmaA: divergence between the Mycobacterium smegmatis and Mycobacterium tuberculosis proteins. J Biol Chem 283(3):1419–1427.  https://doi.org/10.1074/jbc.M708859200CrossRefPubMedGoogle Scholar
  33. Lederer E (1969) Some problems concerning biological C-alkylation reactions and phytosterol biosynthesis. Q Rev Chem Soc 23(4):453–481.  https://doi.org/10.1039/QR9692300453CrossRefGoogle Scholar
  34. McNeil M, Daffe M, Brennan PJ (1991) Location of the mycolyl ester substituents in the cell walls of mycobacteria. J Biol Chem 266(20):13217–13223PubMedGoogle Scholar
  35. Meena LS, Kolattukudy PE (2013) Expression and characterization of Rv0447c product, potentially the methyltransferase involved in tuberculostearic acid biosynthesis in Mycobacterium tuberculosis. Biotechnol Appl Biochem 60(4):412–416.  https://doi.org/10.1002/bab.1112CrossRefPubMedGoogle Scholar
  36. Miggiano R, Casazza V, Garavaglia S, Ciaramella M, Perugino G, Rizzi M, Rossi F (2013) Biochemical and structural studies of the Mycobacterium tuberculosis O6-methylguanine methyltransferase and mutated variants. J Bacteriol 195(12):2728–2736.  https://doi.org/10.1128/JB.02298-12CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miggiano R, Perugino G, Ciaramella M, Serpe M, Rejman D, Pav O, Pohl R, Garavaglia S, Lahiri S, Rizzi M, Rossi F (2016) Crystal structure of Mycobacterium tuberculosis O6-methylguanine-DNA methyltransferase protein clusters assembled on to damaged DNA. Biochem J 473(2):123–133.  https://doi.org/10.1042/BJ20150833CrossRefPubMedGoogle Scholar
  38. Militello KT, Simon RD, Qureshi M, Maines R, VanHorne ML, Hennick SM, Jayakar SK, Pounder S (2012) Conservation of Dcm-mediated cytosine DNA methylation in Escherichia coli. FEMS Microbiol Lett 328(1):78–85.  https://doi.org/10.1111/j.1574-6968.2011.02482.xCrossRefPubMedPubMedCentralGoogle Scholar
  39. Minnikin DE, Polgar N (1967) The methoxymycolic and ketomycolic acids from human tubercle bacilli. Chem Commun (22):1172–1174.  https://doi.org/10.1039/C19670001172
  40. Mizrahi V, Andersen SJ (1998) DNA repair in Mycobacterium tuberculosis. What have we learnt from the genome sequence? Mol Microbiol 29(6):1331–1339.  https://doi.org/10.1046/j.1365-2958.1998.01038.xCrossRefPubMedGoogle Scholar
  41. Nataraj V, Varela C, Javid A, Singh A, Besra GS, Bhatt A (2015) Mycolic acids: deciphering and targeting the Achilles’ heel of the tubercle bacillus. Mol Microbiol 98(1):7–16.  https://doi.org/10.1111/mmi.13101CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ogle JM, Brodersen DE, Clemons WM Jr, Tarry MJ, Carter AP, Ramakrishnan V (2001) Recognition of cognate transfer RNA by the 30S ribosomal subunit. Science 292(5518):897–902.  https://doi.org/10.1126/science.1060612CrossRefPubMedGoogle Scholar
  43. Pethe K, Aumercier M, Fort E, Gatot C, Locht C, Menozzi FD (2000) Characterization of the heparin-binding site of the mycobacterial heparin-binding hemagglutinin adhesin. J Biol Chem 275(19):14273–14280CrossRefGoogle Scholar
  44. Phelan J, de Sessions PF, Tientcheu L, Perdigao J, Machado D, Hasan R, Hasan Z, Bergval IL, Anthony R, McNerney R, Antonio M, Portugal I, Viveiros M, Campino S, Hibberd ML, Clark TG (2018) Methylation in Mycobacterium tuberculosis is lineage specific with associated mutations present globally. Sci Rep 8(1):160.  https://doi.org/10.1038/s41598-017-18188-yCrossRefPubMedPubMedCentralGoogle Scholar
  45. Rahman A, Srivastava SS, Sneh A, Ahmed N, Krishnasastry MV (2010) Molecular characterization of tlyA gene product, Rv1694 of Mycobacterium tuberculosis: a non-conventional hemolysin and a ribosomal RNA methyl transferase. BMC Biochem 11:35.  https://doi.org/10.1186/1471-2091-11-35CrossRefPubMedPubMedCentralGoogle Scholar
  46. Rao V, Fujiwara N, Porcelli SA, Glickman MS (2005) Mycobacterium tuberculosis controls host innate immune activation through cyclopropane modification of a glycolipid effector molecule. J Exp Med 201(4):535–543.  https://doi.org/10.1084/jem.20041668CrossRefPubMedPubMedCentralGoogle Scholar
  47. Rao V, Gao F, Chen B, Jacobs WR, Glickman MS (2006) Trans -cyclopropanation of mycolic acids on trehalose dimycolate suppresses Mycobacterium tuberculosis – induced inflammation and virulence. J Clin Invest 116(6):1660–1667.  https://doi.org/10.1172/JCI27335CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sani M, Houben ENG, Geurtsen J, Pierson J, de Punder K, van Zon M, Wever B, Piersma SR, Jiménez CR, Daffé M, Appelmelk BJ, Bitter W, van der Wel N, Peters PJ (2010) Direct visualization by Cryo-EM of the mycobacterial capsular layer: a labile structure containing ESX-1-secreted proteins. PLoS Pathog 6(3):e1000794.  https://doi.org/10.1371/journal.ppat.1000794CrossRefPubMedPubMedCentralGoogle Scholar
  49. Sharma G, Upadhyay S, Srilalitha M, Nandicoori VK, Khosla S (2015) The interaction of mycobacterial protein Rv2966c with host chromatin is mediated through non-CpG methylation and histone H3/H4 binding. Nucleic Acids Res 43(8):3922–3937.  https://doi.org/10.1093/nar/gkv261CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shatkin AJ, Manley JL (2000) The ends of the affair: capping and polyadenylation. Nat Struct Biol 7(10):838–842.  https://doi.org/10.1038/79583CrossRefPubMedGoogle Scholar
  51. Shell SS, Prestwich EG, Baek SH, Shah RR, Sassetti CM, Dedon PC, Fortune SM (2013) DNA methylation impacts gene expression and ensures hypoxic survival of Mycobacterium tuberculosis. PLoS Pathog 9(7):e1003419.  https://doi.org/10.1371/journal.ppat.1003419CrossRefPubMedPubMedCentralGoogle Scholar
  52. Simeone R, Huet G, Constant P, Malaga W, Lemassu A, Laval F, Daffe M, Guilhot C, Chalut C (2013) Functional characterisation of three o-methyltransferases involved in the biosynthesis of phenolglycolipids in Mycobacterium tuberculosis. PLoS One 8(3):e58954.  https://doi.org/10.1371/journal.pone.0058954CrossRefPubMedPubMedCentralGoogle Scholar
  53. Srivastava R, Gopinathan KP, Ramakrishnan T (1981) Deoxyribonucleic acid methylation in mycobacteria. J Bacteriol 148(2):716–719PubMedPubMedCentralGoogle Scholar
  54. Varshney U, Ramesh V, Madabushi A, Gaur R, Subramanya HS, RajBhandary UL (2004) Mycobacterium tuberculosis Rv2118c codes for a single-component homotetrameric m1A58 tRNA methyltransferase. Nucleic Acids Res 32(3):1018–1027.  https://doi.org/10.1093/nar/gkh207CrossRefPubMedPubMedCentralGoogle Scholar
  55. Voskuil M, Bartek I, Visconti K, Schoolnik G (2011) The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2:105.  https://doi.org/10.3389/fmicb.2011.00105CrossRefPubMedPubMedCentralGoogle Scholar
  56. Wang AY, Grogan DW, Cronan JE (1992) Cyclopropane fatty acid synthase of Escherichia coli: deduced amino acid sequence, purification, and studies of the enzyme active site. Biochemistry 31(45):11020–11028.  https://doi.org/10.1021/bi00160a011CrossRefPubMedGoogle Scholar
  57. Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13:282.  https://doi.org/10.1038/nm0307-282CrossRefPubMedGoogle Scholar
  58. WHO (2017) Global tuberculosis report 2017. WHO Publications. World Health Organization, GenevaGoogle Scholar
  59. Witek MA, Kuiper EG, Minten E, Crispell EK, Conn GL (2017) A novel motif for S-Adenosyl-l-methionine binding by the ribosomal RNA Methyltransferase TlyA from Mycobacterium tuberculosis. J Biol Chem 292(5):1977–1987.  https://doi.org/10.1074/jbc.M116.752659CrossRefPubMedGoogle Scholar
  60. Wong SY, Javid B, Addepalli B, Piszczek G, Strader MB, Limbach PA, Barry CE 3rd (2013) Functional role of methylation of G518 of the 16S rRNA 530 loop by GidB in Mycobacterium tuberculosis. Antimicrob Agents Chemother 57(12):6311–6318.  https://doi.org/10.1128/AAC.00905-13CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wren BW, Stabler RA, Das SS, Butcher PD, Mangan JA, Clarke JD, Casali N, Parish T, Stoker NG (1998) Characterization of a haemolysin from Mycobacterium tuberculosis with homology to a virulence factor of Serpulina hyodysenteriae. Microbiology 144(Pt 5):1205–1211.  https://doi.org/10.1099/00221287-144-5-1205CrossRefPubMedGoogle Scholar
  62. Yang M, Aamodt RM, Dalhus B, Balasingham S, Helle I, Andersen P, Tonjum T, Alseth I, Rognes T, Bjoras M (2011) The ada operon of Mycobacterium tuberculosis encodes two DNA methyltransferases for inducible repair of DNA alkylation damage. DNA Repair (Amst) 10(6):595–602.  https://doi.org/10.1016/j.dnarep.2011.03.007CrossRefGoogle Scholar
  63. Yaseen I, Kaur P, Nandicoori VK, Khosla S (2015) Mycobacteria modulate host epigenetic machinery by Rv1988 methylation of a non-tail arginine of histone H3. Nat Commun 6:8922.  https://doi.org/10.1038/ncomms9922CrossRefPubMedGoogle Scholar
  64. Yuan Y, Barry CE (1996) A common mechanism for the biosynthesis of methoxy and cyclopropyl mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci 93(23):12828–12833CrossRefGoogle Scholar
  65. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE (1995) Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 92(14):6630–6634CrossRefGoogle Scholar
  66. Yuan Y, Crane DC, Musser JM, Sreevatsan S, Barry CE (1997) MMAS-1, the branch point between cis- and trans-Cyclopropane-containing oxygenated Mycolates in Mycobacterium tuberculosis. J Biol Chem 272(15):10041–10049.  https://doi.org/10.1074/jbc.272.15.10041CrossRefPubMedGoogle Scholar
  67. Zhu L, Zhong J, Jia X, Liu G, Kang Y, Dong M, Zhang X, Li Q, Yue L, Li C, Fu J, Xiao J, Yan J, Zhang B, Lei M, Chen S, Lv L, Zhu B, Huang H, Chen F (2016) Precision methylome characterization of Mycobacterium tuberculosis complex (MTBC) using PacBio single-molecule real-time (SMRT) technology. Nucleic Acids Res 44(2):730–743.  https://doi.org/10.1093/nar/gkv1498CrossRefPubMedGoogle Scholar
  68. Zuber B, Chami M, Houssin C, Dubochet J, Griffiths G, Daffé M (2008) Direct visualization of the outer membrane of mycobacteria and Corynebacteria in their native state. J Bacteriol 190(16):5672–5680CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sonam Grover
    • 1
  • Rishabh Gangwar
    • 1
  • Salma Jamal
    • 1
  • Sabeeha Ali
    • 2
  • Khairun Nisaa
    • 3
  • Nasreen Z. Ehtesham
    • 4
  • Seyed Ehtesham Hasnain
    • 1
    • 5
    Email author
  1. 1.JH Institute of Molecular Medicine, Jamia HamdardNew DelhiIndia
  2. 2.Kusuma School of Biological SciencesIndian Institute of TechnologyNew DelhiIndia
  3. 3.Department of Life SciencesBen Gurion University of the NegevBeershebaIsrael
  4. 4.Inflammation Biology and Cell Signaling LaboratoryICMR-National Institute of Pathology, Safdarjung Hospital CampusNew DelhiIndia
  5. 5.Dr Reddy’s Institute of Life SciencesUniversity of Hyderabad CampusHyderabadIndia

Personalised recommendations