Advertisement

Infections with Nontuberculous Mycobacteria: Increased Awareness and Recent Developments

  • Astrid LewinEmail author
  • Hubert Schäfer
Chapter

Abstract

Nontuberculous mycobacteria represent a multispecies and extremely heterogeneous group of environmental bacteria and include many species that can cause severe disease. Still, they are given little attention as pathogenic agents, when compared to Mycobacterium (M.) tuberculosis. Individuals at risk to become infected by NTM usually suffer from immune defects or underlying diseases such as cystic fibrosis or chronic obstructive pulmonary disease. Therapeutic immunosuppression is an additional cause for increased susceptibility, but healthy, apparently immunocompetent individuals may also develop disease. NTM infections can manifest as lung infections, lymphadenitis, skin, bone, and soft tissue infections, or disseminated disease. Pulmonary disease is worldwide most frequently caused by different species of the M. avium complex. M. abscessus causes serious lung infections in patients afflicted by cystic fibrosis. Diagnosis of the infection is frequently delayed because there are few specific symptoms, and cultivation of the infective agent from clinical samples is not always successful. Isolation of NTM from a patient’s lung, on the other hand, is no proof of infection, but might also result from colonization of the organ or from contamination with these ubiquitously occurring environmental bacteria. Therefore further diagnostic options have to be considered before initiating antibiotic intervention. NTM treatment is hampered by the high level of primary resistance against antibiotics, which culminates in the multidrug resistance of M. abscessus. New findings on infection rates, transmission routes, and nosocomial potential of NTM are currently changing our perception of the relevance of NTM infections. In the last two decades, an increase in NTM lung disease was reported in many regions of the world, which can be explained by demographic trends and medical progress prolonging life expectancy of persons vulnerable to NTM infections. Transmission of M. abscessus between patients with cystic fibrosis has challenged the hitherto commonly accepted classification of NTM as environmental non-transmissible infectious agents. And finally the incidence of severe and fatal nosocomial infections has increased attention for NTM. Studies on the burden of disease considering infection numbers, mortality rates, and treatment costs have further substantiated the significance of NTM infections for public health. In view of these new perspectives, a higher priority for NTM disease both in basic research and when deciding on public health measures is indicated.

Keywords

Nontuberculous mycobacteria Burden of disease Public health impact Nosocomial infections Patient-to-patient transmission Immunodiagnosis Immunocompromised Virulence 

Abbreviations

NTM

Nontuberculous mycobacteria

MAC

Mycobacterium avium complex

CF

Cystic fibrosis

COPD

Chronic obstructive pulmonary disease

IFN

Interferon

IL

Interleukin

PCR

Polymerase chain reaction

RFLA

Restriction fragment length analysis

IS

Insertion sequences

MALDI-ToF MS

Matrix-assisted laser desorption ionization-time of flight mass spectroscopy

TST

Tuberculin skin test

IGRA

Interferon-gamma release assay

ELISA

Enzyme-linked immunosorbent assay

PPD

Purified protein derivative

BCG

Bacillus Calmette-Guerin

WHO

World Health Organization

TB

Tuberculosis

ATS

American Thoracic Society

BTS

British Thoracic Society

DST

Drug susceptibility testing

MIC

Minimal inhibitory concentration

rRNA

Ribosomal RNA

GPL

Glycopeptidolipids

References

  1. Adekambi T, Sassi M, van Ingen J, Drancourt M (2017) Reinstating Mycobacterium massiliense and Mycobacterium bolletii as species of the Mycobacterium abscessus complex. Int J Syst Evol Microbiol 67(8):2726–2730.  https://doi.org/10.1099/ijsem.0.002011CrossRefPubMedGoogle Scholar
  2. Adelman MH, Addrizzo-Harris DJ (2018) Management of nontuberculous mycobacterial pulmonary disease. Curr Opin Pulm Med 24(3):212–219.  https://doi.org/10.1097/mcp.0000000000000473CrossRefPubMedGoogle Scholar
  3. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR (2012) Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med 185(8):881–886.  https://doi.org/10.1164/rccm.201111-2016OCCrossRefPubMedPubMedCentralGoogle Scholar
  4. Adjemian J, Olivier KN, Prevots DR (2018) Epidemiology of pulmonary nontuberculous mycobacterial sputum positivity in patients with cystic fibrosis in the United States, 2010–2014. Ann Am Thoracic Soc 15(7):817–826.  https://doi.org/10.1513/AnnalsATS.201709-727OCCrossRefGoogle Scholar
  5. Aitken ML, Limaye A, Pottinger P, Whimbey E, Goss CH, Tonelli MR, Cangelosi GA, Dirac MA, Olivier KN, Brown-Elliott BA, McNulty S, Wallace RJ Jr (2012) Respiratory outbreak of Mycobacterium abscessus subspecies massiliense in a lung transplant and cystic fibrosis center. Am J Respir Crit Care Med 185(2):231–232.  https://doi.org/10.1164/ajrccm.185.2.231CrossRefPubMedGoogle Scholar
  6. Aksamit TR, Philley JV, Griffith DE (2014) Nontuberculous mycobacterial (NTM) lung disease: the top ten essentials. Respir Med 108(3):417–425.  https://doi.org/10.1016/j.rmed.2013.09.014CrossRefPubMedGoogle Scholar
  7. Albert DM, Raven ML (2016) Ocular Tuberculosis. Microbiology Spectrum 4(6).  https://doi.org/10.1128/microbiolspec.TNMI7-0001-2016
  8. Alcaide F, Amlerova J, Bou G, Ceyssens PJ, Coll P, Corcoran D, Fangous MS, Gonzalez-Alvarez I, Gorton R, Greub G, Hery-Arnaud G, Hrabak J, Ingebretsen A, Lucey B, Marekovic I, Mediavilla-Gradolph C, Monte MR, O’Connor J, O’Mahony J, Opota O, O’Reilly B, Orth-Holler D, Oviano M, Palacios JJ, Palop B, Pranada AB, Quiroga L, Rodriguez-Temporal D, Ruiz-Serrano MJ, Tudo G, Van den Bossche A, van Ingen J, Rodriguez-Sanchez B (2018) How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect 24(6):599–603.  https://doi.org/10.1016/j.cmi.2017.11.012CrossRefPubMedGoogle Scholar
  9. Andrejak C, Nielsen R, Thomsen VO, Duhaut P, Sorensen HT, Thomsen RW (2013) Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 68(3):256–262.  https://doi.org/10.1136/thoraxjnl-2012-201772CrossRefPubMedGoogle Scholar
  10. Atreya R, Bulte M, Gerlach GF, Goethe R, Hornef MW, Kohler H, Meens J, Mobius P, Roeb E, Weiss S (2014) Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int J Med Microbiol 304(7):858–867.  https://doi.org/10.1016/j.ijmm.2014.07.006CrossRefPubMedGoogle Scholar
  11. Aubry A, Chosidow O, Caumes E, Robert J, Cambau E (2002) Sixty-three cases of Mycobacterium marinum infection: clinical features, treatment, and antibiotic susceptibility of causative isolates. Arch Intern Med 162(15):1746–1752PubMedCrossRefGoogle Scholar
  12. Aubry A, Mougari F, Reibel F, Cambau E (2017) Mycobacterium marinum. Microbiol Spectr 5(2).  https://doi.org/10.1128/microbiolspec.TNMI7-0038-2016
  13. Avanzi A, Bierbauer K, Vales-Kennedy G, Covino J (2018) Nontuberculous mycobacteria infection risk in medical tourism. JAAPA 31(8):45–47.  https://doi.org/10.1097/01.JAA.0000541484.62234.7fCrossRefPubMedGoogle Scholar
  14. Ballarino GJ, Olivier KN, Claypool RJ, Holland SM, Prevots DR (2009) Pulmonary nontuberculous mycobacterial infections: antibiotic treatment and associated costs. Respir Med 103(10):1448–1455.  https://doi.org/10.1016/j.rmed.2009.04.026CrossRefPubMedPubMedCentralGoogle Scholar
  15. Banuls AL, Sanou A, Anh NT, Godreuil S (2015) Mycobacterium tuberculosis: ecology and evolution of a human bacterium. J Med Microbiol 64(11):1261–1269.  https://doi.org/10.1099/jmm.0.000171CrossRefPubMedGoogle Scholar
  16. Barrow GI, Hewitt M (1971) Skin infection with Mycobacterium marinum from a tropical fish tank. Br Med J 2(5760):505–506PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bastian S, Veziris N, Roux AL, Brossier F, Gaillard JL, Jarlier V, Cambau E (2011) Assessment of clarithromycin susceptibility in strains belonging to the Mycobacterium abscessus group by erm(41) and rrl sequencing. Antimicrob Agents Chemother 55(2):775–781.  https://doi.org/10.1128/aac.00861-10CrossRefPubMedGoogle Scholar
  18. Behr MA (2013) Evolution of Mycobacterium tuberculosis. Adv Exp Med Biol 783:81–91.  https://doi.org/10.1007/978-1-4614-6111-1_4CrossRefPubMedGoogle Scholar
  19. Berliner JG, Aldabagh B, Mully T, Yu SS, Schwartz BS, Berger TG (2015) Non-tuberculous mycobacterial infections following cosmetic laser procedures: a case report and review of the literature. J Drugs Dermatol 14(1):80–83PubMedGoogle Scholar
  20. Beswick J, Shin E, Michelis FV, Thyagu S, Viswabandya A, Lipton JH, Messner H, Marras TK, Kim DDH (2018) Incidence and risk factors for nontuberculous mycobacterial infection after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 24(2):366–372.  https://doi.org/10.1016/j.bbmt.2017.09.015CrossRefGoogle Scholar
  21. Biet F, Boschiroli ML (2014) Non-tuberculous mycobacterial infections of veterinary relevance. Res Vet Sci 97(Suppl):S69–S77.  https://doi.org/10.1016/j.rvsc.2014.08.007CrossRefPubMedGoogle Scholar
  22. Brown-Elliott BA, Iakhiaeva E, Griffith DE, Woods GL, Stout JE, Wolfe CR, Turenne CY, Wallace RJ Jr (2013) In vitro activity of amikacin against isolates of Mycobacterium avium complex with proposed MIC breakpoints and finding of a 16S rRNA gene mutation in treated isolates. J Clin Microbiol 51(10):3389–3394.  https://doi.org/10.1128/jcm.01612-13CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, Reacher M, Haworth CS, Curran MD, Harris SR, Peacock SJ, Parkhill J, Floto RA (2013) Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet (London, England) 381(9877):1551–1560.  https://doi.org/10.1016/s0140-6736(13)60632-7CrossRefGoogle Scholar
  24. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, Verma D, Hill E, Drijkoningen J, Gilligan P, Esther CR, Noone PG, Giddings O, Bell SC, Thomson R, Wainwright CE, Coulter C, Pandey S, Wood ME, Stockwell RE, Ramsay KA, Sherrard LJ, Kidd TJ, Jabbour N, Johnson GR, Knibbs LD, Morawska L, Sly PD, Jones A, Bilton D, Laurenson I, Ruddy M, Bourke S, Bowler IC, Chapman SJ, Clayton A, Cullen M, Daniels T, Dempsey O, Denton M, Desai M, Drew RJ, Edenborough F, Evans J, Folb J, Humphrey H, Isalska B, Jensen-Fangel S, Jonsson B, Jones AM, Katzenstein TL, Lillebaek T, MacGregor G, Mayell S, Millar M, Modha D, Nash EF, O’Brien C, O’Brien D, Ohri C, Pao CS, Peckham D, Perrin F, Perry A, Pressler T, Prtak L, Qvist T, Robb A, Rodgers H, Schaffer K, Shafi N, van Ingen J, Walshaw M, Watson D, West N, Whitehouse J, Haworth CS, Harris SR, Ordway D, Parkhill J, Floto RA (2016) Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science (New York, NY) 354(6313):751–757.  https://doi.org/10.1126/science.aaf8156CrossRefGoogle Scholar
  25. Casanova JL (2001) Mendelian susceptibility to mycobacterial infection in man. Swiss Med Wkly 131(31–32):445–454. doi: 2001/31/smw-09763PubMedGoogle Scholar
  26. Casanova JL (2015) Severe infectious diseases of childhood as monogenic inborn errors of immunity. Proc Natl Acad Sci U S A 112(51):E7128–E7137.  https://doi.org/10.1073/pnas.1521651112CrossRefPubMedPubMedCentralGoogle Scholar
  27. Casanova JL, Abel L (2002) Genetic dissection of immunity to mycobacteria: the human model. Annu Rev Immunol 20:581–620.  https://doi.org/10.1146/annurev.immunol.20.081501.125851CrossRefPubMedGoogle Scholar
  28. Catanzaro A (2002) Diagnosis, differentiating colonization, infection, and disease. Clin Chest Med 23(3):599–601, viPubMedCrossRefGoogle Scholar
  29. Cerna-Cortes JF, Estrada-Garcia T, Gonzalez-y-Merchand JA (2009) Isolation of Mycobacterium mucogenicum from street-vended chili sauces: a potential source of human infection. J Food Prot 72(1):182–184PubMedCrossRefGoogle Scholar
  30. Cerna-Cortes JF, Leon-Montes N, Cortes-Cueto AL, Salas-Rangel LP, Helguera-Repetto AC, Lopez-Hernandez D, Rivera-Gutierrez S, Fernandez-Rendon E, Gonzalez-y-Merchand JA (2015) Microbiological quality of ready-to-eat vegetables collected in Mexico City: occurrence of aerobic-mesophilic bacteria, fecal coliforms, and potentially pathogenic nontuberculous mycobacteria. Biomed Res Int 2015:789508.  https://doi.org/10.1155/2015/789508CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cerna-Cortes JF, Cortes-Cueto AL, Cano-Gaona MR, Leon-Montes N, Helguera-Repetto AC, Rivera-Gutierrez S, Salas-Rangel LP, Castro-Rosas J, Gonzalez YMJA (2016) Microbiological quality and occurrence of nontuberculous mycobacteria in fresh-squeezed orange juice samples purchased from street vendors in Mexico City. J Food Prot 79(12):2190–2195.  https://doi.org/10.4315/0362-028x.jfp-16-197CrossRefPubMedGoogle Scholar
  32. Chae H, Han SJ, Kim SY, Ki CS, Huh HJ, Yong D, Koh WJ, Shin SJ (2017) Development of a one-step multiplex PCR assay for differential detection of major Mycobacterium species. J Clin Microbiol 55(9):2736–2751.  https://doi.org/10.1128/jcm.00549-17CrossRefPubMedPubMedCentralGoogle Scholar
  33. Chan ED, Iseman MD (2010) Slender, older women appear to be more susceptible to nontuberculous mycobacterial lung disease. Gend Med 7(1):5–18.  https://doi.org/10.1016/j.genm.2010.01.005CrossRefPubMedGoogle Scholar
  34. Chang CH, Chang YY, Lu PH (2017) Non-tuberculous mycobacteria infection following autologous fat grafting on the face. Aesthet Surg J 38(1):NP1–NP5.  https://doi.org/10.1093/asj/sjx168CrossRefPubMedGoogle Scholar
  35. Char A, Hopkinson NS, Hansell DM, Nicholson AG, Shaw EC, Clark SJ, Sedgwick P, Wilson R, Jordan S, Loebinger MR (2014) Evidence of mycobacterial disease in COPD patients with lung volume reduction surgery; the importance of histological assessment of specimens: a cohort study. BMC Pulm Med 14:124.  https://doi.org/10.1186/1471-2466-14-124CrossRefPubMedPubMedCentralGoogle Scholar
  36. Chobot S, Malis J, Sebakova H, Pelikan M, Zatloukal O, Palicka P, Kocurova D (1997) Endemic incidence of infections caused by Mycobacterium kansasii in the Karvina district in 1968-1995 (analysis of epidemiological data--review). Cent Eur J Public Health 5(4):164–173PubMedGoogle Scholar
  37. Chu HS, Chang SC, Shen EP, Hu FR (2015) Nontuberculous mycobacterial ocular infections--comparing the clinical and microbiological characteristics between Mycobacterium abscessus and Mycobacterium massiliense. PLoS One 10(1):e0116236.  https://doi.org/10.1371/journal.pone.0116236CrossRefPubMedPubMedCentralGoogle Scholar
  38. CLSI (2011) Susceptibility testing of Mycobacteria, Nocardiae, and other aerobic actinomycetes—second edition: CLSI document M24-A2. Wayne, PA: Clinical and Laboratory Standards InstituteGoogle Scholar
  39. CLSI (2018) Performance standards for susceptibility testing of Mycobacteria, Nocardia spp., and other aerobic actinomycetes-first edition: CLSI supplement M62. Clinical and Laboratory Standards Institute, WayneGoogle Scholar
  40. Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, Mungall K, Basham D, Brown D, Chillingworth T, Connor R, Davies RM, Devlin K, Duthoy S, Feltwell T, Fraser A, Hamlin N, Holroyd S, Hornsby T, Jagels K, Lacroix C, Maclean J, Moule S, Murphy L, Oliver K, Quail MA, Rajandream MA, Rutherford KM, Rutter S, Seeger K, Simon S, Simmonds M, Skelton J, Squares R, Squares S, Stevens K, Taylor K, Whitehead S, Woodward JR, Barrell BG (2001) Massive gene decay in the leprosy bacillus. Nature 409(6823):1007–1011.  https://doi.org/10.1038/35059006CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cowman SA, Loebinger MR (2018) Diagnosis of nontuberculous mycobacteria lung disease. Semin Respir Crit Care Med 39(3):343–350.  https://doi.org/10.1055/s-0038-1651493CrossRefPubMedGoogle Scholar
  42. Crago B, Ferrato C, Drews SJ, Louie T, Ceri H, Turner RJ, Roles A, Louie M (2014) Surveillance and molecular characterization of non-tuberculous mycobacteria in a hospital water distribution system over a three-year period. J Hosp Infect 87(1):59–62.  https://doi.org/10.1016/j.jhin.2014.03.002CrossRefPubMedGoogle Scholar
  43. da Silva MB, Portela JM, Li W, Jackson M, Gonzalez-Juarrero M, Hidalgo AS, Belisle JT, Bouth RC, Gobbo AR, Barreto JG, Minervino AHH, Cole ST, Avanzi C, Busso P, Frade MAC, Geluk A, Salgado CG, Spencer JS (2018) Evidence of zoonotic leprosy in Para, Brazilian Amazon, and risks associated with human contact or consumption of armadillos. PLoS Negl Trop Dis 12(6):e0006532.  https://doi.org/10.1371/journal.pntd.0006532CrossRefPubMedPubMedCentralGoogle Scholar
  44. Daley CL (2009) Nontuberculous mycobacterial disease in transplant recipients: early diagnosis and treatment. Curr Opin Organ Transplant 14(6):619–624.  https://doi.org/10.1097/MOT.0b013e3283327cd6CrossRefPubMedGoogle Scholar
  45. Daley CL, Iseman M (2012) Mycobacterium avium complex and lung cancer: chicken or egg? Both? J Thoracic Oncol 7(9):1329–1330.  https://doi.org/10.1097/JTO.0b013e318265a7efCrossRefGoogle Scholar
  46. De Groote MA, Pace NR, Fulton K, Falkinham JO 3rd (2006) Relationships between mycobacterium isolates from patients with pulmonary mycobacterial infection and potting soils. Appl Environ Microbiol 72(12):7602–7606.  https://doi.org/10.1128/aem.00930-06CrossRefPubMedPubMedCentralGoogle Scholar
  47. Diel R, Jacob J, Lampenius N, Loebinger M, Nienhaus A, Rabe KF, Ringshausen FC (2017) Burden of non-tuberculous mycobacterial pulmonary disease in Germany. Eur Respir J 49(4).  https://doi.org/10.1183/13993003.02109-2016PubMedCrossRefGoogle Scholar
  48. Diel R, Lipman M, Hoefsloot W (2018) High mortality in patients with Mycobacterium avium complex lung disease: a systematic review. BMC Infect Dis 18(1):206.  https://doi.org/10.1186/s12879-018-3113-xCrossRefPubMedPubMedCentralGoogle Scholar
  49. Dodge JA, Lewis PA, Stanton M, Wilsher J (2007) Cystic fibrosis mortality and survival in the UK: 1947–2003. Eur Respir J 29(3):522–526.  https://doi.org/10.1183/09031936.00099506CrossRefPubMedGoogle Scholar
  50. Doffinger R, Altare F, Casanova JL (2000) Genetic heterogeneity of mendelian susceptibility to mycobacterial infection. Microbes Infect 2(13):1553–1557PubMedCrossRefGoogle Scholar
  51. Doffinger R, Dupuis S, Picard C, Fieschi C, Feinberg J, Barcenas-Morales G, Casanova J (2002) Inherited disorders of IL-12- and IFNgamma-mediated immunity: a molecular genetics update. Mol Immunol 38(12–13):903–909PubMedCrossRefGoogle Scholar
  52. Domozych R, Kim E, Hart S, Greenwald J (2016) Increasing incidence of leprosy and transmission from armadillos in Central Florida: a case series. JAAD Case Rep 2(3):189–192.  https://doi.org/10.1016/j.jdcr.2016.03.004CrossRefPubMedPubMedCentralGoogle Scholar
  53. Doucette K, Fishman JA (2004) Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis 38(10):1428–1439.  https://doi.org/10.1086/420746CrossRefPubMedGoogle Scholar
  54. Ellis SM (2004) The spectrum of tuberculosis and non-tuberculous mycobacterial infection. Eur Radiol 14(Suppl 3):E34–E42.  https://doi.org/10.1007/s00330-003-2042-1CrossRefPubMedGoogle Scholar
  55. El-Solh AA, Nopper J, Abdul-Khoudoud MR, Sherif SM, Aquilina AT, Grant BJ (1998) Clinical and radiographic manifestations of uncommon pulmonary nontuberculous mycobacterial disease in AIDS patients. Chest 114(1):138–145PubMedCrossRefGoogle Scholar
  56. El-Zeenni N, Chanoine S, Recule C, Stahl JP, Maurin M, Camara B (2018) Are guidelines on the management of non-tuberculous mycobacteria lung infections respected and what are the consequences for patients? A French retrospective study from 2007 to 2014. Eur J Clin Microbiol Infect Dis 37(2):233–240.  https://doi.org/10.1007/s10096-017-3120-7CrossRefPubMedGoogle Scholar
  57. Eppleston J, Begg DJ, Dhand NK, Watt B, Whittington RJ (2014) Environmental survival of Mycobacterium avium subsp. paratuberculosis in different climatic zones of eastern Australia. Appl Environ Microbiol 80(8):2337–2342.  https://doi.org/10.1128/AEM.03630-13CrossRefPubMedPubMedCentralGoogle Scholar
  58. Falkinham JO 3rd (2016) Current Epidemiologic Trends of the Nontuberculous Mycobacteria (NTM). Curr Environ Health Rep 3(2):161–167.  https://doi.org/10.1007/s40572-016-0086-zCrossRefPubMedGoogle Scholar
  59. Falkinham JO 3rd, Iseman MD, de Haas P, van Soolingen D (2008) Mycobacterium avium in a shower linked to pulmonary disease. J Water Health 6(2):209–213.  https://doi.org/10.2166/wh.2008.032CrossRefPubMedGoogle Scholar
  60. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, Noone PG, Bilton D, Corris P, Gibson RL, Hempstead SE, Koetz K, Sabadosa KA, Sermet-Gaudelus I, Smyth AR, van Ingen J, Wallace RJ, Winthrop KL, Marshall BC, Haworth CS (2016) US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax 71(Suppl 1):i1–i22.  https://doi.org/10.1136/thoraxjnl-2015-207360CrossRefPubMedGoogle Scholar
  61. Fordham von Reyn C, Magnusson M, Chaparas SD, Margileth AM (1995) Use and standardization of the Mycobacterium avium sensitin skin-test reagent. Clin Infect Dis 21(6):1527–1528, 1528, 1529PubMedCrossRefGoogle Scholar
  62. Garcia-Marcos PW, Plaza-Fornieles M, Menasalvas-Ruiz A, Ruiz-Pruneda R, Paredes-Reyes P, Miguelez SA (2017) Risk factors of non-tuberculous mycobacterial lymphadenitis in children: a case-control study. Eur J Pediatr 176(5):607–613.  https://doi.org/10.1007/s00431-017-2882-3CrossRefPubMedGoogle Scholar
  63. Garvey M (2018) Mycobacterium avium subspecies paratuberculosis: a possible causative agent in human morbidity and risk to public health safety. Open Vet J 8(2):172–181.  https://doi.org/10.4314/ovj.v8i2.10CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ghosh R, Das S, Kela H, De A, Haldar J, Maiti PK (2017) Biofilm colonization of Mycobacterium abscessus: new threat in hospital-acquired surgical site infection. Indian J Tuberc 64(3):178–182.  https://doi.org/10.1016/j.ijtb.2016.11.013CrossRefPubMedGoogle Scholar
  65. Gonzalez CD, Petersen MG, Miller M, Park AH, Wilson KF (2016) Complex nontuberculous mycobacterial cervicofacial lymphadenitis: what is the optimal approach? Laryngoscope 126(7):1677–1680.  https://doi.org/10.1002/lary.25603CrossRefPubMedGoogle Scholar
  66. Gray SF, Smith RS, Reynolds NJ, Williams EW (1990) Fish tank granuloma. BMJ (Clin Res ed) 300(6731):1069–1070CrossRefGoogle Scholar
  67. Green DA, Whittier S, Greendyke W, Win C, Chen X, Hamele-Bena D (2017) Outbreak of rapidly growing nontuberculous mycobacteria among patients undergoing cosmetic surgery in the Dominican Republic. Ann Plast Surg 78(1):17–21.  https://doi.org/10.1097/sap.0000000000000746CrossRefPubMedGoogle Scholar
  68. Griffith DE, Aksamit TR (2012) Therapy of refractory nontuberculous mycobacterial lung disease. Curr Opin Infect Dis 25(2):218–227.  https://doi.org/10.1097/QCO.0b013e3283511a64CrossRefPubMedGoogle Scholar
  69. Griffith DE, Brown-Elliott BA, Wallace RJ Jr (2002) Diagnosing nontuberculous mycobacterial lung disease. A process in evolution. Infect Dis Clin N Am 16(1):235–249CrossRefGoogle Scholar
  70. Griffith DE, Brown-Elliott BA, Langsjoen B, Zhang Y, Pan X, Girard W, Nelson K, Caccitolo J, Alvarez J, Shepherd S, Wilson R, Graviss EA, Wallace RJ Jr (2006) Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 174(8):928–934.  https://doi.org/10.1164/rccm.200603-450OCCrossRefPubMedGoogle Scholar
  71. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, Holland SM, Horsburgh R, Huitt G, Iademarco MF, Iseman M, Olivier K, Ruoss S, von Reyn CF, Wallace RJ Jr, Winthrop K (2007) An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 175(4):367–416.  https://doi.org/10.1164/rccm.200604-571STCrossRefPubMedGoogle Scholar
  72. Grubek-Jaworska H, Walkiewicz R, Safianowska A, Nowacka-Mazurek M, Krenke R, Przybylowski T, Chazan R (2009) Nontuberculous mycobacterial infections among patients suspected of pulmonary tuberculosis. Eur J Clin Microbiol Infect Dis 28(7):739–744.  https://doi.org/10.1007/s10096-008-0694-0CrossRefPubMedGoogle Scholar
  73. Gutierrez AV, Viljoen A, Ghigo E, Herrmann JL, Kremer L (2018) Glycopeptidolipids, a double-edged sword of the Mycobacterium abscessus complex. Front Microbiol 9:1145.  https://doi.org/10.3389/fmicb.2018.01145CrossRefPubMedPubMedCentralGoogle Scholar
  74. Halstrom S, Price P, Thomson R (2015) Review: environmental mycobacteria as a cause of human infection. Int J Mycobacteriol 4(2):81–91.  https://doi.org/10.1016/j.ijmyco.2015.03.002CrossRefPubMedGoogle Scholar
  75. Haworth CS, Floto RA (2017) Introducing the new BTS guideline: management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax 72(11):969–970.  https://doi.org/10.1136/thoraxjnl-2017-210929CrossRefPubMedGoogle Scholar
  76. Haworth CS, Banks J, Capstick T, Fisher AJ, Gorsuch T, Laurenson IF, Leitch A, Loebinger MR, Milburn HJ, Nightingale M, Ormerod P, Shingadia D, Smith D, Whitehead N, Wilson R, Floto RA (2017) British thoracic society guideline for the management of non-tuberculous. BMJ Open Respir Res 4(1):2017–000242CrossRefGoogle Scholar
  77. Henkle E, Winthrop KL (2015) Nontuberculous mycobacteria infections in immunosuppressed hosts. Clin Chest Med 36(1):91–99.  https://doi.org/10.1016/j.ccm.2014.11.002CrossRefPubMedGoogle Scholar
  78. Henkle E, Hedberg K, Schafer S, Novosad S, Winthrop KL (2015) Population-based Incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc 12(5):642–647.  https://doi.org/10.1513/AnnalsATS.201412-559OCCrossRefPubMedPubMedCentralGoogle Scholar
  79. Henkle E, Hedberg K, Schafer SD, Winthrop KL (2017) Surveillance of extrapulmonary nontuberculous mycobacteria infections, Oregon, USA, 2007-2012. Emerg Infect Dis 23(10):1627–1630.  https://doi.org/10.3201/eid2310.170845CrossRefPubMedPubMedCentralGoogle Scholar
  80. Hsiao CH, Lin YT, Lai CC, Chou CH, Hsueh PR (2010) Identification of nontuberculous mycobacterial infection by IS6110 and hsp65 gene analysis on lung tissues. Diagn Microbiol Infect Dis 68(3):241–246.  https://doi.org/10.1016/j.diagmicrobio.2010.05.017CrossRefPubMedGoogle Scholar
  81. Huang GK, Johnson PD (2014) Epidemiology and management of Buruli ulcer. Expert Rev Anti-Infect Ther 12(7):855–865.  https://doi.org/10.1586/14787210.2014.910113CrossRefPubMedGoogle Scholar
  82. Huang HC, Weigt SS, Derhovanessian A, Palchevskiy V, Ardehali A, Saggar R, Saggar R, Kubak B, Gregson A, Ross DJ, Lynch JP 3rd, Elashoff R, Belperio JA (2011) Non-tuberculous mycobacterium infection after lung transplantation is associated with increased mortality. J Heart Lung Transplant 30(7):790–798.  https://doi.org/10.1016/j.healun.2011.02.007CrossRefPubMedPubMedCentralGoogle Scholar
  83. Ikawa H, Oka S, Murakami H, Hayashhi A, Yano I (1989) Rapid identification of serotypes of Mycobacterium avium-M. intracellulare complex by using infected swine sera and reference antigenic glycolipids. J Clin Microbiol 27(11):2552–2558PubMedPubMedCentralGoogle Scholar
  84. Jankovic Makek M, Pavlisa G, Jakopovic M, Redzepi G, Zmak L, Vukic Dugac A, Hecimovic A, Mazuranic I, Jaksch P, Klepetko W, Samarzija M (2016) Early onset of nontuberculous mycobacterial pulmonary disease contributes to the lethal outcome in lung transplant recipients: report of two cases and review of the literature. Transpl Infect Dis 18(1):112–119.  https://doi.org/10.1111/tid.12481CrossRefPubMedGoogle Scholar
  85. Johnson MM, Odell JA (2014) Nontuberculous mycobacterial pulmonary infections. J Thoracic Dis 6(3):210–220.  https://doi.org/10.3978/j.issn.2072-1439.2013.12.24CrossRefGoogle Scholar
  86. Johnston DI, Chisty Z, Gross JE, Park SY (2016) Investigation of Mycobacterium abscessus outbreak among cystic fibrosis patients, Hawaii 2012. J Hosp infect 94(2):198–200.  https://doi.org/10.1016/j.jhin.2016.04.015CrossRefPubMedGoogle Scholar
  87. Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, Casanova JL (1999) IL-12 and IFN-gamma in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 11(3):346–351CrossRefPubMedGoogle Scholar
  88. Jung YJ, Kim JY, Song DJ, Koh WJ, Huh HJ, Ki CS, Lee NY (2016) Evaluation of three real-time PCR assays for differential identification of Mycobacterium tuberculosis complex and nontuberculous mycobacteria species in liquid culture media. Diagn Microbiol Infect Dis 85(2):186–191.  https://doi.org/10.1016/j.diagmicrobio.2016.03.014CrossRefPubMedGoogle Scholar
  89. Kahana LM, Kay JM, Yakrus MA, Waserman S (1997) Mycobacterium avium complex infection in an immunocompetent young adult related to hot tub exposure. Chest 111(1):242–245PubMedCrossRefGoogle Scholar
  90. Kapnadak SG, Hisert KB, Pottinger PS, Limaye AP, Aitken ML (2016) Infection control strategies that successfully controlled an outbreak of Mycobacterium abscessus at a cystic fibrosis center. Am J Infect Control 44(2):154–159.  https://doi.org/10.1016/j.ajic.2015.08.023CrossRefPubMedGoogle Scholar
  91. Keller C, Wenker C, Jermann T, Hirschi R, Schildger B, Meier R, Schmidt-Posthaus H (2018) Piscine mycobacteriosis – Involvement of bacterial species and reflection in pathology. Schweizer Archiv fur Tierheilkunde 160(6):385–393.  https://doi.org/10.17236/sat00165CrossRefPubMedGoogle Scholar
  92. Kendall BA, Varley CD, Choi D, Cassidy PM, Hedberg K, Ware MA, Winthrop KL (2011) Distinguishing tuberculosis from nontuberculous mycobacteria lung disease, Oregon, USA. Emerg Infect Dis 17(3):506–509.  https://doi.org/10.3201/eid1703.101164CrossRefPubMedPubMedCentralGoogle Scholar
  93. Kheir WJ, Sheheitli H, Abdul Fattah M, Hamam RN (2015) Nontuberculous mycobacterial ocular infections: a systematic review of the literature. Biomed Res Int 2015:164989.  https://doi.org/10.1155/2015/164989CrossRefPubMedPubMedCentralGoogle Scholar
  94. Kim HS, Lee Y, Lee S, Kim YA, Sun YK (2014) Recent trends in clinically significant nontuberculous mycobacteria isolates at a Korean general hospital. Ann Lab Med 34(1):56–59.  https://doi.org/10.3343/alm.2014.34.1.56CrossRefPubMedGoogle Scholar
  95. Kim JU, Ryu DS, Cha CH, Park SH (2018) Paradigm for diagnosing mycobacterial disease: direct detection and differentiation of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria in clinical specimens using multiplex real-time PCR. J Clin Pathol 71(9):774–780.  https://doi.org/10.1136/jclinpath-2017-204945CrossRefPubMedGoogle Scholar
  96. Kitada S, Maekura R, Toyoshima N, Fujiwara N, Yano I, Ogura T, Ito M, Kobayashi K (2002) Serodiagnosis of pulmonary disease due to Mycobacterium avium complex with an enzyme immunoassay that uses a mixture of glycopeptidolipid antigens. Clin Infect Dis 35(11):1328–1335.  https://doi.org/10.1086/344277CrossRefPubMedGoogle Scholar
  97. Kitada S, Kobayashi K, Nishiuchi Y, Fushitani K, Yoshimura K, Tateishi Y, Miki K, Miki M, Hashimoto H, Motone M, Fujikawa T, Hiraga T, Maekura R (2010) Serodiagnosis of pulmonary disease due to Mycobacterium avium complex proven by bronchial wash culture. Chest 138(1):236–237.  https://doi.org/10.1378/chest.10-0248CrossRefPubMedGoogle Scholar
  98. Kitada S, Yoshimura K, Miki K, Miki M, Hashimoto H, Matsui H, Kuroyama M, Ageshio F, Kagawa H, Mori M, Maekura R, Kobayashi K (2015) Validation of a commercial serodiagnostic kit for diagnosing pulmonary Mycobacterium avium complex disease. Int J Tuberc Lung Dis 19(1):97–103.  https://doi.org/10.5588/ijtld.14.0564CrossRefPubMedGoogle Scholar
  99. Kitada S, Maekura R, Yoshimura K, Miki K, Miki M, Oshitani Y, Nishida K, Sawa N, Mori M, Kobayashi K (2017) Levels of antibody against Glycopeptidolipid core as a marker for monitoring treatment response in Mycobacterium avium complex pulmonary disease: a prospective cohort study. J Clin Microbiol 55(3):884–892.  https://doi.org/10.1128/JCM.02010-16CrossRefPubMedPubMedCentralGoogle Scholar
  100. Klanicova-Zalewska B, Slana I (2014) Presence and persistence of Mycobacterium avium and other nontuberculous mycobacteria in animal tissues and derived foods: a review. Meat Sci 98(4):835–841.  https://doi.org/10.1016/j.meatsci.2014.08.001CrossRefPubMedGoogle Scholar
  101. Knoll BM (2014) Update on nontuberculous mycobacterial infections in solid organ and hematopoietic stem cell transplant recipients. Curr Infect Dis Rep 16(9):421.  https://doi.org/10.1007/s11908-014-0421-1CrossRefPubMedGoogle Scholar
  102. Kobashi Y, Yoshida K, Miyashita N, Niki Y, Matsushima T (2004) Pulmonary Mycobacterium avium disease with a solitary pulmonary nodule requiring differentiation from recurrence of pulmonary adenocarcinoma. Intern Med 43(9):855–860PubMedCrossRefGoogle Scholar
  103. Kobayashi K (2014) Serodiagnosis of Mycobacterium avium complex disease in humans: translational research from basic mycobacteriology to clinical medicine. Jpn J Infect Dis 67(5):329–332PubMedCrossRefGoogle Scholar
  104. Koh WJ (2017) Nontuberculous mycobacteria-overview. Microbiol Spectr 5(1).  https://doi.org/10.1128/microbiolspec.TNMI7-0024-2016
  105. Kohler H, Burkert B, Pavlik I, Diller R, Geue L, Conraths FJ, Martin G (2008) Evaluation of five ELISA test kits for the measurement of antibodies against Mycobacterium avium subspecies paratuberculosis in bovine serum. Berl Munch Tierarztl Wochenschr 121(5–6):203–210PubMedGoogle Scholar
  106. Kwon YS, Koh WJ (2014) Diagnosis of pulmonary tuberculosis and nontuberculous mycobacterial lung disease in Korea. Tuberc Respir Dis (Seoul) 77(1):1–5.  https://doi.org/10.4046/trd.2014.77.1.1CrossRefGoogle Scholar
  107. Kwon YS, Koh WJ (2016) Diagnosis and treatment of nontuberculous mycobacterial lung disease. J Korean Med Sci 31(5):649–659.  https://doi.org/10.3346/jkms.2016.31.5.649CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lahiri A, Kneisel J, Kloster I, Kamal E, Lewin A (2014) Abundance of Mycobacterium avium ssp. hominissuis in soil and dust in Germany – implications for the infection route. Lett Appl Microbiol 59(1):65–70PubMedCrossRefGoogle Scholar
  109. Leao C, Canto A, Machado D, Sanches IS, Couto I, Viveiros M, Inacio J, Botelho A (2014) Relatedness of Mycobacterium avium subspecies hominissuis clinical isolates of human and porcine origins assessed by MLVA. Vet Microbiol 173(1-2):92–100.  https://doi.org/10.1016/j.vetmic.2014.06.027CrossRefPubMedGoogle Scholar
  110. Leite CQ, Anno IS, Leite SR, Roxo E, Morlock GP, Cooksey RC (2003) Isolation and identification of mycobacteria from livestock specimens and milk obtained in Brazil. Memorias do Instituto Oswaldo Cruz 98(3):319–323PubMedCrossRefGoogle Scholar
  111. Lewin A, Sharbati-Tehrani S (2005) Slow growth rate of mycobacteria. Possible reasons and significance for their pathogenicity. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 48(12):1390–1399.  https://doi.org/10.1007/s00103-005-1171-xCrossRefGoogle Scholar
  112. Li T, Abebe LS, Cronk R, Bartram J (2017) A systematic review of waterborne infections from nontuberculous mycobacteria in health care facility water systems. Int J Hyg Environ Health 220(3):611–620.  https://doi.org/10.1016/j.ijheh.2016.12.002CrossRefPubMedGoogle Scholar
  113. Liao CH, Chen MY, Hsieh SM, Sheng WH, Hung CC, Chang SC (2004) Discontinuation of secondary prophylaxis in AIDS patients with disseminated non-tuberculous mycobacteria infection. J Microbiol Immunol Infect 37(1):50–56PubMedGoogle Scholar
  114. Lindeboom JA, Kuijper EJ, Bruijnesteijn van Coppenraet ES, Lindeboom R, Prins JM (2007) Surgical excision versus antibiotic treatment for nontuberculous mycobacterial cervicofacial lymphadenitis in children: a multicenter, randomized, controlled trial. Clin Infect Dis 44(8):1057–1064.  https://doi.org/10.1086/512675CrossRefPubMedGoogle Scholar
  115. Magdorf K, Schuck SD, Leitner S, Wahn U, Kaufmann SH, Jacobsen M (2008) T-cell responses against tuberculin and sensitin in children with tuberculosis and non-tuberculosis mycobacterial lymphadenopathy. Clin Microbiol Infect 14(11):1079–1083.  https://doi.org/10.1111/j.1469-0691.2008.02084.xCrossRefPubMedGoogle Scholar
  116. Magnusson M (1961) Specificity of mycobacterial sensitins. I. Studies in guinea pigs with purified “tuberculin” prepared from mammalian and avian tubercle bacilli, Mycobacterium balnei, and other acid-fast bacilli. Am Rev Respir Dis 83:57–68.  https://doi.org/10.1164/arrd.1961.83.1.57CrossRefPubMedGoogle Scholar
  117. Magnusson M, Bentzon MW, Bleiker MA, Engbaek HC, Griep WA, Manten A (1961) Comparative intradermal reactions of tuberculosis patients to purified tuberculin (PPD) and purified sensitin prepared from Mycobacterium kansasii. Acta Tuberc Scand 40:85–102PubMedGoogle Scholar
  118. Makovcova J, Slany M, Babak V, Slana I, Kralik P (2014) The water environment as a source of potentially pathogenic mycobacteria. J Water Health 12(2):254–263.  https://doi.org/10.2166/wh.2013.102CrossRefPubMedGoogle Scholar
  119. Marks J, Palfreyman M, Yates MD, Schaefer WB (1977) Differential tuberculin test for mycobacterial infection in children. Tubercle 58(1):19–23PubMedCrossRefGoogle Scholar
  120. Marras TK, Prevots DR, Jamieson FB, Winthrop KL, Pulmonary MACOG (2015) Variable agreement among experts regarding Mycobacterium avium complex lung disease. Respirology (Carlton, Vic) 20(2):348–351.  https://doi.org/10.1111/resp.12440CrossRefGoogle Scholar
  121. McGrath EE, McCabe J, Anderson PB, American Thoracic S, Infectious Diseases Society of A (2008) Guidelines on the diagnosis and treatment of pulmonary non-tuberculous mycobacteria infection. Int J Clin Pract 62(12):1947–1955.  https://doi.org/10.1111/j.1742-1241.2008.01891CrossRefPubMedGoogle Scholar
  122. Misch EA, Saddler C, Davis JM (2018) Skin and soft tissue infections due to nontuberculous mycobacteria. Curr Infect Dis Rep 20(4):6.  https://doi.org/10.1007/s11908-018-0611-3CrossRefPubMedGoogle Scholar
  123. Mohamad B, Iqbal MN, Gopal KV, Arshad S, Daw HA (2012) Mai infection simulating metastatic breast cancer. BMJ Case Rep 2012.  https://doi.org/10.1136/bcr-01-2012-5640Google Scholar
  124. Mullis SN, Falkinham JO 3rd (2013) Adherence and biofilm formation of Mycobacterium avium, Mycobacterium intracellulare and Mycobacterium abscessus to household plumbing materials. J Appl Microbiol 115(3):908–914.  https://doi.org/10.1111/jam.12272CrossRefPubMedGoogle Scholar
  125. Murray CJLL, Lopez AD (1996) The global burden of disease:1–43, published by The Harvard School of Public Health on Behalf of The World Health Organization and The World Bank distributed by Harvard University Press, ISBN 0-9655466-0-8Google Scholar
  126. Nasiri MJ, Haeili M, Ghazi M, Goudarzi H, Pormohammad A, Imani Fooladi AA, Feizabadi MM (2017) New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Front Microbiol 8:681.  https://doi.org/10.3389/fmicb.2017.00681CrossRefPubMedPubMedCentralGoogle Scholar
  127. Nessar R, Cambau E, Reyrat JM, Murray A, Gicquel B (2012) Mycobacterium abscessus: a new antibiotic nightmare. J Antimicrob Chemother 67(4):810–818.  https://doi.org/10.1093/jac/dkr578CrossRefPubMedGoogle Scholar
  128. Noguchi S, Nishimoto Y, Taguchi Y, Kobashi Y, Noma S (2016) A case of disseminated Mycobacterium avium complex infection mimicking systemic metastases from lung cancer. J Thorac Imaging 31(6):W73–w75.  https://doi.org/10.1097/rti.0000000000000239CrossRefPubMedGoogle Scholar
  129. O’Connor JA, O’Reilly B, Corcoran GD, O’Mahony J, Lucey B (2015) Mycobacterium diagnostics: from the primitive to the promising. Br J Biomed Sci 72(1):32–41PubMedCrossRefGoogle Scholar
  130. Oriani AS, Sierra F, Baldini MD (2018) Effect of chlorine on Mycobacterium gordonae and Mycobacterium chubuense in planktonic and Biofilm state. In J Mycobacteriol 7(2):122–127.  https://doi.org/10.4103/ijmy.ijmy_30_18CrossRefGoogle Scholar
  131. Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO 3rd, Iseman MD, Reynolds PR, McDonnell G, Thomas V (2013) Cooccurrence of free-living amoebae and nontuberculous mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79(10):3185–3192.  https://doi.org/10.1128/aem.03823-12CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pandian TK, Deziel PJ, Otley CC, Eid AJ, Razonable RR (2008) Mycobacterium marinum infections in transplant recipients: case report and review of the literature. Transpl Infect Dis 10(5):358–363.  https://doi.org/10.1111/j.1399-3062.2008.00317.xCrossRefPubMedGoogle Scholar
  133. Pang Y, Lu J, Su B, Zheng H, Zhao Y (2017) Misdiagnosis of tuberculosis associated with some species of nontuberculous mycobacteria by GeneXpert MTB/RIF assay. Infection 45(5):677–681.  https://doi.org/10.1007/s15010-017-1044-xCrossRefPubMedGoogle Scholar
  134. Park IK, Olivier KN (2015) Nontuberculous mycobacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin Respir Crit Care Med 36(2):217–224.  https://doi.org/10.1055/s-0035-1546751CrossRefPubMedGoogle Scholar
  135. Parrish N (2019) An update on mycobacterial taxonomy: 2016–2017. J Clin Microbiol.  https://doi.org/10.1128/jcm.01408-18
  136. Patel R, Roberts GD, Keating MR, Paya CV (1994) Infections due to nontuberculous mycobacteria in kidney, heart, and liver transplant recipients. Clinical Infect Dis 19(2):263–273CrossRefGoogle Scholar
  137. Patel SS, Saraiya NV, Tessler HH, Goldstein DA (2013) Mycobacterial ocular inflammation: delay in diagnosis and other factors impacting morbidity. JAMA Ophthalmol 131(6):752–758.  https://doi.org/10.1001/jamaophthalmol.2013.71CrossRefPubMedGoogle Scholar
  138. Peters M, Muller C, Rusch-Gerdes S, Seidel C, Gobel U, Pohle HD, Ruf B (1995) Isolation of atypical mycobacteria from tap water in hospitals and homes: is this a possible source of disseminated MAC infection in AIDS patients? J Infect 31(1):39–44PubMedCrossRefGoogle Scholar
  139. Piersimoni C (2012) Nontuberculous mycobacteria infection in solid organ transplant recipients. Eur J Clin Microbiol Infect Dis 31(4):397–403.  https://doi.org/10.1007/s10096-011-1329-4CrossRefPubMedGoogle Scholar
  140. Piersimoni C, Scarparo C (2009) Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg Infect Dis 15(9):1351–1358.; quiz 1544.  https://doi.org/10.3201/eid1509.081259CrossRefPubMedPubMedCentralGoogle Scholar
  141. Policard A, Gernez-Rieux C, Tacquet A, Martin JC, Devulder B, Le Bouffant L (1967) Influence of pulmonary dust load on the development of experimental infection by Mycobacterium kansasii. Nature 216(5111):177–178PubMedCrossRefGoogle Scholar
  142. Prammananan T, Sander P, Brown BA, Frischkorn K, Onyi GO, Zhang Y, Bottger EC, Wallace RJ Jr (1998) A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 177(6):1573–1581PubMedCrossRefGoogle Scholar
  143. Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, Montes de Oca R, Shea YR, Seitz AE, Holland SM, Olivier KN (2010) Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med 182(7):970–976.  https://doi.org/10.1164/rccm.201002-0310OCCrossRefPubMedPubMedCentralGoogle Scholar
  144. Primm TP, Lucero CA, Falkinham JO (2004) Health impacts of environmental mycobacteria. Clin Microbiol Rev 17(1):98–106.  https://doi.org/10.1128/cmr.17.1.98-106.2004CrossRefPubMedPubMedCentralGoogle Scholar
  145. Rahman SA, Singh Y, Kohli S, Ahmad J, Ehtesham NZ, Tyagi AK, Hasnain SE (2014) Comparative analyses of nonpathogenic, opportunistic, and totally pathogenic mycobacteria reveal genomic and biochemical variabilities and highlight the survival attributes of Mycobacterium tuberculosis. MBio 5(6):e02020.  https://doi.org/10.1128/mBio.02020-14CrossRefPubMedPubMedCentralGoogle Scholar
  146. Rao M, Silveira FP (2018) Non-tuberculous mycobacterial infections in thoracic transplant candidates and recipients. Curr Infect Dis Rep 20(6):14.  https://doi.org/10.1007/s11908-018-0619-8CrossRefPubMedGoogle Scholar
  147. Reichenbach J, Rosenzweig S, Doffinger R, Dupuis S, Holland SM, Casanova JL (2001) Mycobacterial diseases in primary immunodeficiencies. Curr Opin Allergy Clin Immunol 1(6):503–511PubMedCrossRefGoogle Scholar
  148. Rindi L, Garzelli C (2014) Genetic diversity and phylogeny of Mycobacterium avium. Infect Genet Evol 21:375–383.  https://doi.org/10.1016/j.meegid.2013.12.007CrossRefPubMedGoogle Scholar
  149. Runyon EH (1959) Anonymous mycobacteria in pulmonary disease. Med Clin North Am 43(1):273–290PubMedCrossRefGoogle Scholar
  150. Ryu YJ, Koh WJ, Daley CL (2016) Diagnosis and treatment of nontuberculous mycobacterial lung disease: clinicians’ perspectives. Tuberc Respir Dis (Seoul) 79(2):74–84.  https://doi.org/10.4046/trd.2016.79.2.74CrossRefGoogle Scholar
  151. Sakane T, Matsuoka K, Kumata S, Watanabe R, Yamada T, Matsuoka T, Nagai S, Ueda M, Miyamoto Y (2018) The outcomes of anatomical lung resection for nontuberculous mycobacterial lung disease. J Thoracic Dis 10(2):954–962.  https://doi.org/10.21037/jtd.2018.01.60CrossRefGoogle Scholar
  152. Samba-Louaka A, Robino E, Cochard T, Branger M, Delafont V, Aucher W, Wambeke W, Bannantine JP, Biet F, Hechard Y (2018) Environmental Mycobacterium avium subsp. paratuberculosis hosted by free-living Amoebae. Front Cellular Infect Microbiol 8:28.  https://doi.org/10.3389/fcimb.2018.00028CrossRefGoogle Scholar
  153. Sanchini A, Semmler T, Mao L, Kumar N, Dematheis F, Tandon K, Peddireddy V, Ahmed N, Lewin A (2016) A hypervariable genomic island identified in clinical and environmental Mycobacterium avium subsp. hominissuis isolates from Germany. Int J Med Microbiol 306(7):495–503.  https://doi.org/10.1016/j.ijmm.2016.07.001CrossRefPubMedGoogle Scholar
  154. Sax H, Bloemberg G, Hasse B, Sommerstein R, Kohler P, Achermann Y, Rossle M, Falk V, Kuster SP, Bottger EC, Weber R (2015) Prolonged outbreak of Mycobacterium chimaera infection after open-chest heart surgery. Clin Infect Dis 61(1):67–75.  https://doi.org/10.1093/cid/civ198CrossRefPubMedGoogle Scholar
  155. Schaefer WB (1967) Type-specificity of atypical mycobacteria in agglutination and antibody absorption tests. Am Rev Respir Dis 96(6):1165–1168.  https://doi.org/10.1164/arrd.1967.96.6.1165CrossRefPubMedGoogle Scholar
  156. Scriven JE, Scobie A, Verlander NQ, Houston A, Collyns T, Cajic V, Kon OM, Mitchell T, Rahama O, Robinson A, Withama S, Wilson P, Maxwell D, Agranoff D, Davies E, Llewelyn M, Soo SS, Sahota A, Cooper M, Hunter M, Tomlins J, Tiberi S, Kendall S, Dedicoat M, Alexander E, Fenech T, Zambon M, Lamagni T, Smith EG, Chand M (2018) Mycobacterium chimaera infection following cardiac surgery in the United Kingdom: clinical features and outcome of the first 30 cases. Clin Microbiol Infect.  https://doi.org/10.1016/j.cmi.2018.04.027PubMedCrossRefGoogle Scholar
  157. Serour F, Mizrahi A, Somekh E, Feinberg J, Picard C, Casanova JL, Dalal I (2007) Analysis of the interleukin-12/interferon-gamma pathway in children with non-tuberculous mycobacterial cervical lymphadenitis. Eur J Pediatr 166(8):835–841.  https://doi.org/10.1007/s00431-006-0338-2CrossRefPubMedGoogle Scholar
  158. Sevilla IA, Molina E, Tello M, Elguezabal N, Juste RA, Garrido JM (2017) Detection of mycobacteria by culture and DNA-based methods in animal-derived food products purchased at Spanish supermarkets. Front Microbiol 8:1030.  https://doi.org/10.3389/fmicb.2017.01030CrossRefPubMedPubMedCentralGoogle Scholar
  159. Shah SK, McAnally KJ, Seoane L, Lombard GA, LaPlace SG, Lick S, Dhillon GS, Valentine VG (2016) Analysis of pulmonary non-tuberculous mycobacterial infections after lung transplantation. Transpl Infect Dis 18(4):585–591.  https://doi.org/10.1111/tid.12546CrossRefPubMedGoogle Scholar
  160. Sharbati-Tehrani S, Stephan J, Holland G, Appel B, Niederweis M, Lewin A (2005) Porins limit the intracellular persistence of Mycobacterium smegmatis. Microbiology 151(Pt 7):2403–2410.  https://doi.org/10.1099/mic.0.27969-0CrossRefPubMedGoogle Scholar
  161. Shoulah SA, Oschmann AM, Selim A, Semmler T, Schwarz C, Kamal E, Hamouda F, Galila E, Bitter W, Lewin A (2018) Environmental Mycobacterium avium subsp. hominissuis have a higher probability to act as a recipient in conjugation than clinical strains. Plasmid 95:28–35.  https://doi.org/10.1016/j.plasmid.2018.01.003CrossRefPubMedGoogle Scholar
  162. Shu CC, Ato M, Wang JT, Jou R, Wang JY, Kobayashi K, Lai HC, Yu CJ, Lee LN, Luh KT (2013) Sero-diagnosis of Mycobacterium avium complex lung disease using serum immunoglobulin a antibody against glycopeptidolipid antigen in Taiwan. PLoS One 8(11):e80473.  https://doi.org/10.1371/journal.pone.0080473CrossRefPubMedPubMedCentralGoogle Scholar
  163. Slany M, Pavlik I (2012) Molecular detection of nontuberculous mycobacteria: advantages and limits of a broad-range sequencing approach. J Mol Microbiol Biotechnol 22(4):268–276.  https://doi.org/10.1159/000342517CrossRefPubMedGoogle Scholar
  164. Sood G, Parrish N (2017) Outbreaks of nontuberculous mycobacteria. Curr Opin Infect Dis 30(4):404–409.  https://doi.org/10.1097/qco.0000000000000386CrossRefPubMedGoogle Scholar
  165. Steindor M, Nkwouano V, Mayatepek E, Mackenzie CR, Schramm D, Jacobsen M (2015) Rapid detection and immune characterization of Mycobacterium abscessus infection in cystic fibrosis patients. PLoS One 10(3):e0119737.  https://doi.org/10.1371/journal.pone.0119737CrossRefPubMedPubMedCentralGoogle Scholar
  166. Strollo SE, Adjemian J, Adjemian MK, Prevots DR (2015) The burden of pulmonary nontuberculous mycobacterial disease in the United States. Ann Am Thoracic Soc 12(10):1458–1464.  https://doi.org/10.1513/AnnalsATS.201503-173OCCrossRefGoogle Scholar
  167. Taylor RH, Falkinham JO 3rd, Norton CD, LeChevallier MW (2000) Chlorine, chloramine, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol 66(4):1702–1705PubMedPubMedCentralCrossRefGoogle Scholar
  168. Thanachartwet V, Desakorn V, Duangrithi D, Chunpongthong P, Phojanamongkolkij K, Jitruckthai P, Kasetjaroen Y, Pitisuttithum P (2014) Comparison of clinical and laboratory findings between those with pulmonary tuberculosis and those with nontuberculous mycobacterial lung disease. Southeast Asian J Trop Med Public health 45(1):85–94PubMedGoogle Scholar
  169. Thillai M, Pollock K, Pareek M, Lalvani A (2014) Interferon-gamma release assays for tuberculosis: current and future applications. Expert Rev Respir Med 8(1):67–78.  https://doi.org/10.1586/17476348.2014.852471CrossRefPubMedGoogle Scholar
  170. Thomson R, Donnan E, Konstantinos A (2017) Notification of nontuberculous mycobacteria: an Australian perspective. Ann Am Thoracic Soc 14(3):318–323.  https://doi.org/10.1513/AnnalsATS.201612-994OICrossRefGoogle Scholar
  171. Tirkkonen T, Pakarinen J, Moisander AM, Makinen J, Soini H, Ali-Vehmas T (2007) High genetic relatedness among Mycobacterium avium strains isolated from pigs and humans revealed by comparative IS1245 RFLP analysis. Vet Microbiol 125(1-2):175–181.  https://doi.org/10.1016/j.vetmic.2007.05.005CrossRefPubMedGoogle Scholar
  172. Torres-Coy JA, Rodriguez-Castillo BA, Perez-Alfonzo R, Dew JH (2016) Source investigation of two outbreaks of skin and soft tissue infection by Mycobacterium abscessus subsp. abscessus in Venezuela. Epidemiol Infect 144(5):1117–1120.  https://doi.org/10.1017/s0950268815002381CrossRefPubMedGoogle Scholar
  173. Touma Z, Haddad A, Gladman DD, Uleryk EM, Urowitz MB (2013) Skin nontuberculous mycobacterial infection in systemic lupus erythematosus: an unusual skin infection mimicking lupus vasculitis. Semin Arthritis Rheum 42(5):498–506.  https://doi.org/10.1016/j.semarthrit.2012.08.002CrossRefPubMedGoogle Scholar
  174. Trovato A, Baldan R, Costa D, Simonetti TM, Cirillo DM, Tortoli E (2017) Molecular typing of Mycobacterium abscessus isolated from cystic fibrosis patients. Int J Mycobacteriol 6(2):138–141.  https://doi.org/10.4103/ijmy.ijmy_33_17CrossRefPubMedGoogle Scholar
  175. Uchiya KI, Tomida S, Nakagawa T, Asahi S, Nikai T, Ogawa K (2017) Comparative genome analyses of Mycobacterium avium reveal genomic features of its subspecies and strains that cause progression of pulmonary disease. Sci Rep 7:39750.  https://doi.org/10.1038/srep39750CrossRefPubMedPubMedCentralGoogle Scholar
  176. Umehara T, Aoki M, Harada A, Watanabe Y, Sato M (2015) A Case of Nontuberculous Mycobacteria Highly Suspected as Lung Cancer Invading the Aortic Arch. J Thoracic Oncol 10(7):1118–1119.  https://doi.org/10.1097/jto.0000000000000413CrossRefGoogle Scholar
  177. van Ingen J, Kuijper EJ (2014) Drug susceptibility testing of nontuberculous mycobacteria. Future Microbiol 9(9):1095–1110.  https://doi.org/10.2217/fmb.14.60CrossRefPubMedGoogle Scholar
  178. van Ingen J, Boeree MJ, Dekhuijzen PN, van Soolingen D (2008) Mycobacterial disease in patients with rheumatic disease. Nat Clin Pract Rheumatol 4(12):649–656.  https://doi.org/10.1038/ncprheum0949CrossRefPubMedGoogle Scholar
  179. Van Ingen J, Boeree MJ, Van Soolingen D, Mouton JW (2012) Resistance mechanisms and drug susceptibility testing of nontuberculous mycobacteria. Drug Resist Updat 15(3):149–161PubMedCrossRefGoogle Scholar
  180. van Ingen J, Kohl TA, Kranzer K, Hasse B, Keller PM, Katarzyna Szafranska A, Hillemann D, Chand M, Schreiber PW, Sommerstein R, Berger C, Genoni M, Ruegg C, Troillet N, Widmer AF, Becker SL, Herrmann M, Eckmanns T, Haller S, Holler C, Debast SB, Wolfhagen MJ, Hopman J, Kluytmans J, Langelaar M, Notermans DW, Ten Oever J, van den Barselaar P, Vonk ABA, Vos MC, Ahmed N, Brown T, Crook D, Lamagni T, Phin N, Smith EG, Zambon M, Serr A, Gotting T, Ebner W, Thurmer A, Utpatel C, Sproer C, Bunk B, Nubel U, Bloemberg GV, Bottger EC, Niemann S, Wagner D, Sax H (2017) Global outbreak of severe Mycobacterium chimaera disease after cardiac surgery: a molecular epidemiological study. Lancet Infect Dis 17(10):1033–1041.  https://doi.org/10.1016/s1473-3099(17)30324-9CrossRefPubMedGoogle Scholar
  181. Vincenzi C, Bardazzi F, Tosti A, Varotti C, Morganti L (1992) Fish tank granuloma: report of a case. Cutis 49(4):275–276PubMedGoogle Scholar
  182. Waddell LA, Rajic A, Sargeant J, Harris J, Amezcua R, Downey L, Read S, McEwen SA (2008) The zoonotic potential of Mycobacterium avium spp. paratuberculosis: a systematic review. Can J Public Health = Revue canadienne de sante publique 99(2):145–155PubMedCrossRefGoogle Scholar
  183. Walker J, Moore G, Collins S, Parks S, Garvey MI, Lamagni T, Smith G, Dawkin L, Goldenberg S, Chand M (2017) Microbiological problems and biofilms associated with Mycobacterium chimaera in heater-cooler units used for cardiopulmonary bypass. J Hosp Infect 96(3):209–220.  https://doi.org/10.1016/j.jhin.2017.04.014CrossRefPubMedGoogle Scholar
  184. Wang HY, Kim H, Kim S, Kim DK, Cho SN, Lee H (2015) Performance of a real-time PCR assay for the rapid identification of Mycobacterium species. J Microbiol (Seoul, Korea) 53(1):38–46.  https://doi.org/10.1007/s12275-015-4495-8CrossRefGoogle Scholar
  185. Wang HY, Uh Y, Kim S, Lee H (2017) Performance of the Quantamatrix multiplexed assay platform system for the differentiation and identification of Mycobacterium species. J Med Microbiol 66(6):777–787.  https://doi.org/10.1099/jmm.0.000495CrossRefPubMedGoogle Scholar
  186. WHO (2010) Commercial serodiagnostic tests for diagnosis of tuberculosis WHO. http://www.who.int/tb/publications/tb-serodiagnostic-report/en/. 2018
  187. WHO (2018) Latent TB infection: updated and consolidated guidelines for programmatic management, 2018th edn. WHO, GenevaGoogle Scholar
  188. Willemse SH, Oomens M, De Lange J, Karssemakers LHE (2018) Diagnosing nontuberculous mycobacterial cervicofacial lymphadenitis in children: a systematic review. Int J Pediatr Otorhinolaryngol 112:48–54.  https://doi.org/10.1016/j.ijporl.2018.06.034CrossRefPubMedGoogle Scholar
  189. Yeung MW, Khoo E, Brode SK, Jamieson FB, Kamiya H, Kwong JC, Macdonald L, Marras TK, Morimoto K, Sander B (2016) Health-related quality of life, comorbidities and mortality in pulmonary nontuberculous mycobacterial infections: a systematic review. Respirology (Carlton, Vic) 21(6):1015–1025.  https://doi.org/10.1111/resp.12767CrossRefGoogle Scholar
  190. Yu H, Jeong H, Hong Y, Seol S, Chung D, Kong H (2007) Natural occurrence of mycobacterium as an endosymbiont of acanthamoeba isolated from a contact lens storage case. Korean J Parasitol 45(1):11–18PubMedPubMedCentralCrossRefGoogle Scholar
  191. Yuan MK, Chang CY, Tsai PH, Lee YM, Huang JW, Chang SC (2014) Comparative chest computed tomography findings of non-tuberculous mycobacterial lung diseases and pulmonary tuberculosis in patients with acid fast bacilli smear-positive sputum. BMC Pulm Med 14:65.  https://doi.org/10.1186/1471-2466-14-65CrossRefPubMedPubMedCentralGoogle Scholar
  192. Zheng H, Liu D, Lu J, Song Y, Wang S, Zhao Y, Ni X (2019) Genetic Correlation of antibiotic susceptibility and resistance genotyping for the Mycobacterium abscessus group. Antimicrob Agents Chemother 63(1).  https://doi.org/10.1128/aac.01523-18

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Robert Koch Institute, Unit 16 Mycotic and Parasitic Agents and MycobacteriaBerlinGermany

Personalised recommendations