Advertisement

Quorum Sensing-Controlled Gene Expression Systems in Gram-Positive and Gram-Negative Bacteria

  • Meghanath PrabhuEmail author
  • Milind Naik
  • Veda Manerikar
Chapter

Abstract

In this chapter, quorum sensing (QS)-controlled gene expression systems in Gram-positive and Gram-negative bacteria is particularly emphasized. Acyl homoserine lactone (AHL) autoinducer (AI)-mediated signalling is a communication system in Gram-negative bacteria that control specific genes expression imparting physiological characteristics such as biofilm formation, bioluminescence, antibiotic synthesis, plasmid transfer, virulence factor, metal resistance and hydrocarbon degradation. AI concentrations reach a threshold level when adequate bacterial density is present that allows sensing a critical cell mass and in response they activate or repress target genes expression. Strikingly, AI binds the LuxR-type proteins, triggering them bind DNA and activate transcription of target genes. Synthesis of the AHL is dependent on a luxI homologue and a luxR homologue encoding a transcriptional activator protein, which is accountable for recognition of the cognate AHL and expression of correct gene. Gram-positive bacterial QS systems typically use secreted small oligopeptides via a dedicated ABC (ATP-binding cassette) exporter protein and two-component systems, which involve membrane-bound sensor kinase receptors and transcription factors present in cytoplasm which is responsible for alterations in gene expression. The process of signal transduction takes place as a phosphorelay cascade.

Keywords

Quorum sensing (QS) Acyl homoserine lactone (AHL) Autoinducer (AI) ABC (ATP-binding cassette) Controlled gene expression 

Notes

Acknowledgement

Author MP and MN would like to thank for the financial support provided by Goa University. MN thanks the Science and Engineering Research Board (SERB), Department of Science and Technology, and Government of India for financial support by the Young Scientist Project (File Number: YSS/2014/000258).

References

  1. Biswa P, Doble M (2013) Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiol Lett 343:34–41CrossRefGoogle Scholar
  2. Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116CrossRefGoogle Scholar
  3. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23(3):616–687CrossRefGoogle Scholar
  4. de Almeida FA, Pimentel-Filho NJ, Pinto UM, Montavani HC, de Oliveira LL, Vanrtti MCD (2017) Acyl homoserine lactone-based quorum sensing stimulates biofilm formation by Salmonella enteritidis in aerobic conditions. Arch Microbiol 199:475–486CrossRefGoogle Scholar
  5. Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18(2):73–80CrossRefGoogle Scholar
  6. Federle MJ, Bassler BL (2003) Interspecies communication in bacteria. J Clin Invest 112:1291–1299CrossRefGoogle Scholar
  7. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468CrossRefGoogle Scholar
  8. Garmyn D, Gal L, Lemaitre JP, Hartmann A, Piveteau P (2009) Communication and autoinduction in the species Listeria monocytogenes: a central role for the agr system. Commun Integr Biol 2(4):371–374CrossRefGoogle Scholar
  9. Garmyn D, Gal L, Briandet R, Guilbaud M, Lemaître JP, Hartmann A, Piveteau P (2011) Evidence of autoinduction heterogeneity via expression of the Agr system of Listeria monocytogenes at the single-cell level. Appl Environ Microbiol 77(17):6286–6289CrossRefGoogle Scholar
  10. Gupta RK, Chhibber S, Harjai K (2011) Acyl homoserine lactones from culture supernatants of Pseudomonas aeruginosa accelerate host immunomodulation. PLoS One.  https://doi.org/10.1371/journal.pone.0020860CrossRefGoogle Scholar
  11. Han SW, Sriariyanun M, Lee SW, Sharma M, Bahar O, Bower Z, Ronald PC (2011) Small protein-mediated quorum sensing in a gram-negative bacterium. PLoS One 6:e29192CrossRefGoogle Scholar
  12. Holden MTG, Chhrabra SR, de Nys R, Stead P, Bainton NJ, Hill PJ, Manefield M, Kumar N, Labette M, England D, Rice S, Givskov M, Salmond GPC, Stewart GSAB, Bycroft BW, Kjelleberg S, Williams P (1999) Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 33:1254–1266CrossRefGoogle Scholar
  13. Huillet E, Tempelaars MH, André-Leroux G, Wanapaisan P, Bridoux L, Makhzami S, Panbangred W, Martin-Verstraete I, Abee T, Lereclus D (2012) PlcRa, a new quorum-sensing regulator from Bacillus cereus, plays a role in oxidative stress responses and cysteine metabolism in stationary phase. PloS One.  https://doi.org/10.1371/journal.pone.0051047CrossRefGoogle Scholar
  14. Kaufmann GF, Park J, Janda KD (2008) Bacterial quorum sensing: a new target for anti-infective immunotherapy. Expert Opin Biol Ther 8(6):719–724.  https://doi.org/10.1517/14712598.8.6.719CrossRefGoogle Scholar
  15. Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci 99(10):7072–7077.  https://doi.org/10.1073/pnas.092016999CrossRefGoogle Scholar
  16. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77(1):73–111.  https://doi.org/10.1128/MMBR.00046-12CrossRefGoogle Scholar
  17. Lazdunski AM, Ventre I, Sturgis JN (2004) Regulatory circuits and communication in Gram-negative bacteria. Nat Rev Microbiol 2(7):581–592.  https://doi.org/10.1038/nrmicro924CrossRefPubMedGoogle Scholar
  18. Li Y-H, Tian X (2016) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538.  https://doi.org/10.3390/s120302519CrossRefGoogle Scholar
  19. McGann P, Ivanek R, Wiedmann M, Boor KJ (2007) Temperature-dependent expression of Listeria monocytogenes internalin and internalin-like genes suggests functional diversity of these proteins among the listeriae. Appl Environ Microbiol 73(9):2806–2814.  https://doi.org/10.1128/AEM.02923-06CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 13(7):e1006504.  https://doi.org/10.1371/journal.ppat.1006504CrossRefPubMedPubMedCentralGoogle Scholar
  21. Naik MM, Bhangui P, Bhat C (2017) The first report on Listeria monocytogenes producing siderophores and responds positively to N-acyl homoserine lactone (AHL) molecules by enhanced biofilm formation. Arch Microbiol.  https://doi.org/10.1007/s00203-017-1416-8CrossRefGoogle Scholar
  22. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  23. Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 77(22):8097–8105CrossRefGoogle Scholar
  24. Papenfort K, Bassler BL (2016) Quorum sensing signal-response systems in Gram-negative bacteria. Nat Rev Microbiol 14(9):576–588.  https://doi.org/10.1038/nrmicro.2016.89CrossRefPubMedPubMedCentralGoogle Scholar
  25. Prabhu MS, Walawalkar YD, Furtado I (2014) Purification and molecular and biological characterisation of the 1-hydroxyphenazine, produced by an environmental strain of Pseudomonas aeruginosa. World J Microbiol Biotechnol 30(12):3091–3099.  https://doi.org/10.1007/s11274-014-1736-7CrossRefPubMedGoogle Scholar
  26. Qazi S, Middlenton B, Muharram SH, Cockayne A, Hill P, O’Shea P, Chhabra SR, Camera M, Williams P (2006) N-Acylhomoserine lactones antagonise virulence gene expression and quorum sensing in Staphylococcus aureus. Infect Immun:910–919Google Scholar
  27. Rantsiou K, Mataragas M, Alessandria V, Cocolin L (2012) Expression of virulence genes of Listeria monocytogenes in food. J Food Safety 32(2):161–168.  https://doi.org/10.1111/j.1745-4565.2011.00363.xCrossRefGoogle Scholar
  28. Riedel CU, Monk IR, Casey PG, Waidmann MS, Gahan CG, Hill C (2009) AgrD-dependent quorum sensing affects biofilm formation, invasion, virulence and global gene expression profiles in Listeria monocytogenes. Mol Microbiol 71(5):1177–89.  https://doi.org/10.1111/j.1365-2958.2008.06589.xCrossRefGoogle Scholar
  29. Rieu A, Weidmann S, Garmyn D, Piveteau P, Guzzo J (2007) Agr system of Listeria monocytogenes EGD-e: role in adherence and differential expression pattern. Appl Environ Microbiol 73(19):6125–6133CrossRefGoogle Scholar
  30. Rutherford ST, Bassler BL (2012) Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med.  https://doi.org/10.1101/cshperspect.a012427CrossRefGoogle Scholar
  31. Stauff DV, Bassler BL (2011) Quorum sensing in Chromobacterium violaceum: DNA recognition and gene regulation by the CviR receptor. J Bacteriol 193:3871–3878CrossRefGoogle Scholar
  32. Syal K (2017) Novel method for quantitative estimation of biofilms. Curr Microbiol 74(10):1194–1199.  https://doi.org/10.1007/s00284-017-1304-0CrossRefPubMedGoogle Scholar
  33. Turovskiy Y, Kashtanov D, Paskhovar B, Chikindas ML (2007) Quorum sensing: fact, fiction, and everything in between. Adv Appl Microbiol 62:191–234Google Scholar
  34. Walters M, Sircili MP, Sperandio V (2006) AI-3 synthesis is not dependent on luxS in Escherichia coli. J Bacteriol 188(16):5668–5681CrossRefGoogle Scholar
  35. Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320.  https://doi.org/10.1038/nature24624CrossRefGoogle Scholar
  36. Zetzmann M, Sanchez-Kopper A, Waidmann MS, Blombach B, Riedel CU (2016) Identification of agr peptide of Listeria monocytogenes. Front Microbiol 7:989.  https://doi.org/10.3389/fmicb.2016.00989

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyGoa UniversityTaleigao PlateauIndia

Personalised recommendations