Advertisement

Quorum Sensing: Communication Complexity for Resilience of Plant-Microbe Interaction

  • K. Archana
  • K. Sathi Reddy
  • P. Ravinder
  • M. Yahya Khan
  • Hameeda BeeEmail author
Chapter

Abstract

Microorganisms employ a precised communication pattern among themselves in order to coordinate between various processes during their growth. Both unicellular and multicellular microbes are found to show cell density-driven gene expression. This phenomenon of density-dependent cell regulation used for survival, prevalence and colonization of specific host is generally termed as quorum sensing (QS). Microorganisms respond to this stimulus once the signalling molecule reaches its threshold concentration. Since they are found to be able to regulate their own production, they are termed as autoinducers (quorum sensing molecules). These molecules function by sensing their own population with respect to their density and distribution pattern in the prevailing environment. Hence, microorganisms use such environmental sensing mechanisms to get adapted as well as for their survival in the existing conditions in their habitat, thereby maintaining healthy cell population. The autoinducers occur widespread in several microorganisms and differ from each other in their molecular structures. Acyl homoserine lactones (AHL), Autoinducer (AI), i.e., AI-2, AI-3 and quinolones are the common QS signalling molecules in Gram-negative bacteria, while cyclic peptides, AI-2 and butyrolactones are observed as signalling molecules in Gram-positive bacteria. In the case of actinomycetes, small diffusible molecules called autoregulators, A-factor and 2-iso-octanoyl-(3R)-hydroxymethyl-γ-butyrolactone act as QS signalling molecules. Understanding the connection between genomes, gene expression and the molecules in complex environment is considered to be a tough task. Increasing interest towards studying the underlying mechanisms has led to the development of various model systems. Among them, plant-microbe symbiotic system is considered to be the best one to study the inter-kingdom molecular cross-talk. During the process of evolution, plants started to respond to the external stimuli in different and more specific ways. One such way includes production of AHL-like molecules to regulate the QS of plant-associated microorganisms. In view of this, the present chapter will be focused on quorum sensing molecules and their role in plant-microbe interaction.

Keywords

Quorum sensing Inter-kingdom signalling Autoinducer AHL Lipoxygenase Diffusible signal factor Oxylipins Gram-positive bacteria Gram-negative bacteria Fungi 

Notes

Acknowledgement

The authors acknowledge the financial support from UGC-MJRP 42-481/2013(SR) and UGC-BSR-RFSMS F.4-1/2006(BSR) 7-369/2012(BSR).

References

  1. Ahmad I, Aquil F, Ahmad F, Zahin M, Musarrat J (2008) Quorum sensing in bacteria: potential in plant health protection. In: Ahmad I, Hayat S, Pichtel J (eds) Plant-bacteria interactions: strategies and techniques to promote plant growth. Wiley, Weinheim, pp 129–153CrossRefGoogle Scholar
  2. Alqueres S, Menses C, Rouws L, Rothballer M, Baldani I, Schmid M, Hartmann A (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus strain PAL5. Mol Plant Microbe Interact 26:937–945PubMedCrossRefGoogle Scholar
  3. Amari DT, Marques CNH, Davies DG (2013) The putative enoyl-coenzyme A hydratase DspI is required for production of the Pseudomonas aeruginosa biofilm dispersion autoinducer cis-2-decenoic acid. J Bacteriol 195:4600–4610PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amrutha RN, Bramhachari PV, Prakasham RS (2018) Quorum-sensing mechanism in rhizobium sp.: revealing complexity in a molecular dialogue. In: Implication of quorum sensing system in biofilm formation and virulence. Springer, Singapore, pp 249–258CrossRefGoogle Scholar
  5. Balaban N, Novick RP (1995) Autocrine regulation of toxin synthesis by Staphylococcus aureus. Proc Natl Acad Sci U S A 92:1619–1623PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barnard AM, Bowden SD, Burr T, Coulthurst SJ, Monson RE, Salmond GP (2007) Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc B Biol Sci 362:1165–1183CrossRefGoogle Scholar
  7. Bassler BL (2002) Small talk: cell to cell communication in bacteria. Cell 109:421–424PubMedPubMedCentralGoogle Scholar
  8. Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson RA, Keller NP (2009) Oxygenase coordination is required for morphological transition and the host fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894PubMedCrossRefGoogle Scholar
  9. Calvo AM, Wilson RA, Bok JW, Keller NP (2002) Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459PubMedPubMedCentralCrossRefGoogle Scholar
  10. Chan KG, Puthucheary SD, Chan XY, Yin WF, Wong CS, Too WS (2011) Quorum sensing in Aeromonas species isolated from patients in Malaysia. Curr Microbiol 62:167–172PubMedCrossRefGoogle Scholar
  11. Chapalain A, Vial L, Laprade N, Dekimpe V, Perreault J, Deziel E (2013) Identification of quorum sensing-controlled genes in Burkholderia ambifaria. Microbiol Open 2:226–242CrossRefGoogle Scholar
  12. Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci U S A 101:5048–5052PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chevrot R, Rosen R, Haudecoeur E, Cirou A, Shelp BJ, Ron E, Faure D (2006) GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 103:7460–7464PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chin-A-Woeng TFC, Van den Broek D, deVoer G, Vander Drift KMGM, Tuinman S, Thomas-Oates JE, Lugtenberg BJJ, Bloemberg GV (2001) Phenazine-1-carboxamide production in the biocontrol strain Pseudomonas chlororaphis PCL1391 is regulated by multiple factors secreted into the growth medium. Mol Plant-Microbe Interact 14:969–979PubMedCrossRefGoogle Scholar
  15. Chin-A-Woeng TFC, Bloemberg GV, Lugtenberg BJJ (2003) Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol 157:503–523CrossRefGoogle Scholar
  16. Dunlap PV (1999) Quorum regulation of luminescence in Vibrio fischeri. J Mol Microbiol Biotechnol 1:5–12PubMedGoogle Scholar
  17. Ferluga S, Steindler L, Venturi V (2008) N-acyl homoserine lactone quorum sensing in Gram negative rhizobacteria. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 69–90CrossRefGoogle Scholar
  18. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2011) Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and Al-2 quorum sensing pathways. Chem Rev 111:28–67PubMedCrossRefGoogle Scholar
  19. Gao M, Teplitski M, Robinson JB, Bauer WD (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834CrossRefGoogle Scholar
  20. Gao X, Brodhagen M, Isakeit T, Brown SH, Gobel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22:222–231PubMedPubMedCentralCrossRefGoogle Scholar
  21. Givskov M, de Nys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone mediated prokaryotic signalling. J Bacteriol 178:6618–6622PubMedPubMedCentralCrossRefGoogle Scholar
  22. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing Rhizobacteria. Microbiol Mol Biol Rev 67:574–592PubMedPubMedCentralCrossRefGoogle Scholar
  23. González O, Ortíz-Castro R, Díaz-Pérez C, Díaz-Pérez AL, Magaña-Dueñas V, López-Bucio J, Campos-García J (2017) Non-ribosomal peptide synthases from Pseudomonas aeruginosa play a role in cyclodipeptide biosynthesis, quorum-sensing regulation, and root development in a plant host. Microb Ecol 73:616–629PubMedCrossRefGoogle Scholar
  24. Hartmann A, Schikora A (2012) Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J Chem Ecol 38:704–713PubMedCrossRefGoogle Scholar
  25. Hartmann A, Gantner S, Schuhegger R, Steidle A, Dürr C, Schmid M (2004) N-acyl-homoserine lactones of rhizosphere bacteria trigger systemic resistance in tomato plants. In: Lugtenberg B, Tikhonovich I, Provorov N (eds) Biology of molecular plant-microbe interactions, vol 4. MPMI-Press, St. Paul, pp 554–556Google Scholar
  26. Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656PubMedCrossRefGoogle Scholar
  27. Hogan DA (2006) Talking to themselves: autoregulation and quorum sensing in fungi. Eukaryot Cell 5:613–619PubMedPubMedCentralCrossRefGoogle Scholar
  28. Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992PubMedPubMedCentralCrossRefGoogle Scholar
  29. Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685PubMedPubMedCentralCrossRefGoogle Scholar
  30. Jin G, Liu F, Ma H, Hao S, Zhao Q, Bian Z, Jia Z, Song S (2012) Two G-protein-coupled receptor candidates, Cand2 and Cand7, are involved in Arabidopsis root growth mediated by the bacterial quorum-sensing signals N-acyl-homoserine lactones. Biochem Biophys Res Commun 417:991–995CrossRefGoogle Scholar
  31. Joseph CM, Phillip DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192CrossRefGoogle Scholar
  32. Kang JE, Han JW, Jeon BJ, Kim BS (2016) Efficacies of quorum sensing inhibitors Piericidin A and Glucupiericidin A produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atrosptica. Microbiol Res 184:32–41PubMedCrossRefGoogle Scholar
  33. Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187:8427–8436PubMedPubMedCentralCrossRefGoogle Scholar
  34. Liu X, Bimerew M, Ma Y, Müller H, Ovadis M, Eberl L, Berg G, Chernin L (2007) Quorum-sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol Lett 270:299–305PubMedCrossRefPubMedCentralGoogle Scholar
  35. Liu F, Bian Z, Jia Z, Zhao Q, Song S (2012) The GCR1 and GPA1 participate in promotion of Arabidopsis primary root elongation induced by N-acyl-homoserine lactones, the bacterial quorum-sensing system. Mol Plant Microbe Interact 25:677–683PubMedCrossRefPubMedCentralGoogle Scholar
  36. López-Ráez JA, Bouwmeester H, Pozo MJ (2012) Communication in the rhizosphere, a target for pest management. In: Agroecology and strategies for climate change. Springer, Dordrecht, pp 109–133CrossRefGoogle Scholar
  37. Lutter E, Lewenza S, Dennis JJ, Visser MB, Sokol PA (2001) Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69:4661–4666PubMedPubMedCentralCrossRefGoogle Scholar
  38. Madhani HD (2011) Quorum sensing in fungi: Q&A. PLOS Pathog 7:e1002301PubMedPubMedCentralCrossRefGoogle Scholar
  39. Manefield M, Rasmussen TB, Henzter M, Andersen JB, Steinberg P, Kjelleberg S, Givskov M (2002) Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology 148:1119–1127CrossRefGoogle Scholar
  40. Mathesius, U., Mulders, S., Gao, M., Teplitski, M., Caetano-Anoliés, G., Rolfe, B. G., Baur, W. D. (2003). Extensive and specific responses of a eukaryote to bacterial quorum sensing signals. Proceedings of National Academy of Sciences of the United States of America, 100:1444-1449CrossRefGoogle Scholar
  41. Mellbye B, Schuster M (2011) More than just a quorum: integration of stress and other environmental cues in acyl-homoserine lactone signalling. In: Storz G, Hengge R (eds) Bacterial stress responses. ASM Press, Washington, DC, pp 349–363Google Scholar
  42. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663PubMedCrossRefGoogle Scholar
  43. Morfeldt E, Taylor D, Von Gabain A, Arvidson S (1995) Activation of alpha toxin translation in staphylococcus aureus by the transcoded antisense RNA, RNA III. EMBO J 14:4569–4577PubMedPubMedCentralCrossRefGoogle Scholar
  44. Mosblech A, Feussner I, Heilmann I (2009) Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem 47:511–517PubMedCrossRefGoogle Scholar
  45. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Mueller MJ, Berger S (2008) General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. Plant Cell 20:768–785PubMedPubMedCentralCrossRefGoogle Scholar
  46. O’Connell A, An SQ, McCarthy Y, Schulte F, Niehaus K, He YQ, Ryan RP, Dow JL (2013) Proteomics analysis of the regulatory role of Rpf/DSF cell-to-cell signaling system in the virulence of Xanthomonas campestris. Mol Plant Microbe Interact 26:1131–1137PubMedCrossRefGoogle Scholar
  47. Ortíz-Castro R, Martinez-Trujillo M, López-Bucio J (2008) N-acyl homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31:1497–1509PubMedCrossRefGoogle Scholar
  48. Pang Y, Liu X, Ma Y, Chernin L, Berg G, Gao K (2009) Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur J Plant Pathol 124:261–268CrossRefGoogle Scholar
  49. Raina S, DeVizio D, Palonen EK, Odell M, Brandt AM, Soini JT, Keshavarz T (2012) Is quorum sensing involved in lovastatin production in the filamentous fungus Aspergillus terreus? Process Biochem 47:843–852CrossRefGoogle Scholar
  50. Rumbaugh KP (ed) (2011) Quorum sensing: methods and protocols. Methods in molecular biology. Springer, New YorkGoogle Scholar
  51. Ryan RP, An SQ, Allan JH (2015) The DSF family of cell–cell signals: an expanding class of bacterial virulence regulators. PLoS Pathog 11:e1004986PubMedPubMedCentralCrossRefGoogle Scholar
  52. Schenk ST, Stein E, Kogel KH, Schikora A (2012) Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules. Plant Signal Behaviour 7:178–181CrossRefGoogle Scholar
  53. Schimmel TG, Coffman AD, Parsons SJ (1998) Effect of butyrolactone I on the producing fungus Aspergillus terreus. Appl Environ Microbiol 64:3707–3712PubMedPubMedCentralGoogle Scholar
  54. Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437PubMedCrossRefGoogle Scholar
  55. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Breusegem FV, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato plants by N-acyl-homoserine lactone–producing rhizosphere bacteria. Plant Cell Environ 29:909–918CrossRefGoogle Scholar
  56. Sorrentino F, Roy I, Keshavarz T (2010) Impact of linoleic acid supplementation on lovastatin production in Aspergillus terreus cultures. Appl Microbiol Biotechnol 88:65–73PubMedCrossRefGoogle Scholar
  57. Sturme MH, Kleerebezem M, Nakayama J, Akkermans ADL, Vaughan EE, deVos WM (2002) Cell to cell communication by autoinducing peptides in Gram-positive bacteria. Antonie Van Leeuwenhoek 81:233–243PubMedPubMedCentralCrossRefGoogle Scholar
  58. Suárez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266PubMedCrossRefGoogle Scholar
  59. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviours in associated bacteria. Mol Plant Microbe Interact 13:637–648PubMedCrossRefGoogle Scholar
  60. Tian J, Weng LX, Zhan YQ, Wang LH (2013) BDSF inhibits Candida albicans adherence to urinary catheters. Microb Pathog 64:33–38PubMedCrossRefGoogle Scholar
  61. Tsitsigiannis DI, Keller NP (2007) Oxylipins as developmental and host–fungal communication signals. Trends Microbiol 15:109–118PubMedCrossRefGoogle Scholar
  62. Urlich RL (2004) Quorum quenching: enzymatic disruption of N-Acylhomoserine lactone-mediated bacterial communication in Burkholderia thailandensis. Appl Environ Microbiol 70:6173–6180CrossRefGoogle Scholar
  63. Uroz S, Heinonsalo J (2008) Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root associated fungi. FEMS Microbiol Ecol 65:271–278PubMedCrossRefGoogle Scholar
  64. Von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-kopplin P, Durner J (2008) The response of Arabidopsis thaliana to N-hexanoyl- DL-homoserine lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229:73–85CrossRefGoogle Scholar
  65. Wang LH, He Y, Gao Y, Wu JE, Dong YH, He C, Wang SX, Weng LX, Xu JL, Tay L (2004) A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51:903–912PubMedCrossRefGoogle Scholar
  66. White CE, Winans SC (2008) The cell-cell communication system of Agrobacterium tumefaciens. In: Tzfira T, Citovsky V (eds) Agrobacterium: from biology to biotechnology. Springer, New York, pp 593–622CrossRefGoogle Scholar
  67. Williams P (2007) Quorum sensing, communication and cross kingdom signalling in the bacterial world. Microbiology 153:3923–3938PubMedCrossRefGoogle Scholar
  68. Wood DW, Gong F, Daykin MM, Williams P, Pierson LS (1997) N-acyl homoserine lactone mediated regulation of phenazine gene expressions by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J Bacteriol 174:7663–7670CrossRefGoogle Scholar
  69. Zhou H, Yao F, Roberts DP, Lessie TG (2003) AHL-deficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr Microbiol 47:174–179PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. Archana
    • 1
    • 2
  • K. Sathi Reddy
    • 1
    • 2
  • P. Ravinder
    • 1
    • 2
  • M. Yahya Khan
    • 1
    • 2
  • Hameeda Bee
    • 1
    • 2
    Email author
  1. 1.Department of Microbiology, UCSOsmania UniversityHyderabadIndia
  2. 2.Kalam Biotech Pvt. LtdHyderabadIndia

Personalised recommendations