Perspectives and Molecular Understanding of Pancreatic Cancer Stem Cells

  • L. Saikrishna
  • Prameswari Kasa
  • Saimila Momin
  • L. V. K. S. BhaskarEmail author


Pancreatic cancer (PC) is a lethal, malignant cancer that bears high mortality rates. Due to its lack of noticeable symptoms, it is often diagnosed late and current pancreatic cancer therapies are ineffective with poor prognosis. Despite the high mortality and poor survival of PC patients, there is limited information on factors propagating resistance. Resistance to standard therapies in pancreatic cancer patients is partly associated with the presence of a subpopulation of highly plastic “stem-like” cells (pancreatic cancer stem cells: paCSC) in tumors. In this connection, it is important to have a strong understanding of the paCSC population, especially its distinct characteristics, in order to engineer new therapies to target these resistant cells. Therefore, the purpose of this investigation is to highlight and discuss PaCSC and their specific surface markers. Overall, in this study, we searched MEDLINE, EMBASE, the Cochrane Library, Web of Science, and ISI Proceedings for observational studies relating to the PaCSC and PC. Pancreatic cancer stem cells exhibit specific immune characteristics on their surface. The CD133, CD44, CD24, ALDH1, c-Met, DCLK1, CXCR4, EpCAM and ABCG2 are prominent Pa-CSC markers. As PaCSCs drive tumorigenesis and metastasis, their manipulation approaches would have widespread clinical implications and hence improve outcomes in pancreatic cancer.


Cancer stem cells Pancreatic cancer Stem cell markers Signaling cascades 



15-Hydroxyprostaglandin dehydrogenase




ATP-binding cassette subfamily G member 2


Aldehyde dehydrogenase


leukocyte cell adhesion molecule


Cancer stem cells


C-X-C chemokine receptor type 4


Doublecortin-like kinase 1


Epithelial mesenchymal transition


Epithelial cell adhesion molecule


hyaluronic acid


Hepatocyte growth factor


Messenger RNA


albumin-bound paclitaxel


Neuroendocrine tumors


nonobese diabetic/severe combined immunodeficiency


Pancreatic cancer stem cells


Pancreatic cancer


pancreatic ductal adenocarcinoma


pancreatic and duodenal homeobox 1




Tumor microenvironment


Conflict of Interest

There are no conflicts of interests.


  1. 1.
    Adamska A, Domenichini A, Falasca M (2017) Pancreatic ductal adenocarcinoma: current and evolving therapies. Int J Mol Sci 18:1338PubMedCentralGoogle Scholar
  2. 2.
    Akita H, Nagano H, Takeda Y, Eguchi H, Wada H, Kobayashi S, Marubashi S, Tanemura M, Takahashi H, Ohigashi H, Tomita Y, Ishikawa O, Mori M, Doki Y (2011) Ep-CAM is a significant prognostic factor in pancreatic cancer patients by suppressing cell activity. Oncogene 30:3468–3476PubMedGoogle Scholar
  3. 3.
    Aliebrahimi S, Kouhsari SM, Arab SS, Shadboorestan A, Ostad SN (2018) Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed Pharmacother 106:1527–1536PubMedGoogle Scholar
  4. 4.
    Amundadottir LT (2016) Pancreatic cancer genetics. Int J Biol Sci 12:314–325PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ansari D, Tingstedt B, Andersson B, Holmquist F, Sturesson C, Williamsson C, Sasor A, Borg D, Bauden M, Andersson R (2016) Pancreatic cancer: yesterday, today and tomorrow. Future Oncol 12:1929–1946PubMedGoogle Scholar
  6. 6.
    Arima K, Ohmuraya M, Miyake K, Koiwa M, Uchihara T, Izumi D, Gao F, Yonemura A, Bu L, Okabe H, Imai K, Hashimoto D, Baba Y, Chikamoto A, Yamashita YI, Furukawa T, Araki K, Baba H, Ishimoto T (2019) Inhibition of 15-PGDH causes Kras-driven tumor expansion through prostaglandin E2-ALDH1 signaling in the pancreas. Oncogene 38:1211–1224PubMedGoogle Scholar
  7. 7.
    Au A, Aziz Baba A, Goh AS, Wahid Fadilah SA, Teh A, Rosline H, Ankathil R (2014) Association of genotypes and haplotypes of multi-drug transporter genes ABCB1 and ABCG2 with clinical response to imatinib mesylate in chronic myeloid leukemia patients. Biomed Pharmacother 68:343–349PubMedGoogle Scholar
  8. 8.
    Bailey JM, Alsina J, Rasheed ZA, McAllister FM, Fu YY, Plentz R, Zhang H, Pasricha PJ, Bardeesy N, Matsui W, Maitra A, Leach SD (2014) DCLK1 marks a morphologically distinct subpopulation of cells with stem cell properties in preinvasive pancreatic cancer. Gastroenterology 146:245–256PubMedGoogle Scholar
  9. 9.
    Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179PubMedGoogle Scholar
  10. 10.
    Bhagwandin VJ, Bishop JM, Wright WE, Shay JW (2016) The metastatic potential and chemoresistance of human pancreatic cancer stem cells. PLoS One 11:e0148807PubMedPubMedCentralGoogle Scholar
  11. 11.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedGoogle Scholar
  12. 12.
    Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J Clin 68:394–424Google Scholar
  13. 13.
    Chatterjee S, Behnam Azad B, Nimmagadda S (2014) The intricate role of CXCR4 in cancer. Adv Cancer Res 124:31–82PubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen Z, Che Q, He X, Wang F, Wang H, Zhu M, Sun J, Wan X (2015) Stem cell protein Piwil1 endowed endometrial cancer cells with stem-like properties via inducing epithelial-mesenchymal transition. BMC Cancer 15:811PubMedPubMedCentralGoogle Scholar
  15. 15.
    Chen F, Roberts NJ, Klein AP (2017) Inherited pancreatic cancer. Chin Clin Oncol 6:58–58PubMedPubMedCentralGoogle Scholar
  16. 16.
    Costa MJ, Kudaravalli J, Ma JT, Ho WH, Delaria K, Holz C, Stauffer A, Chunyk AG, Zong Q, Blasi E, Buetow B, Tran TT, Lindquist K, Dorywalska M, Rajpal A, Shelton DL, Strop P, Liu SH (2019) Optimal design, anti-tumour efficacy and tolerability of anti-CXCR4 antibody drug conjugates. Sci Rep 9:2443PubMedPubMedCentralGoogle Scholar
  17. 17.
    Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, Li C, Wang LP, Roby KF, Orsulic S, Connolly DC, Zhang Y, Montone K, Butzow R, Coukos G, Zhang L (2010) Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One 5:e10277PubMedPubMedCentralGoogle Scholar
  18. 18.
    Dimova I, Karthik S, Makanya A, Hlushchuk R, Semela D, Volarevic V, Djonov V (2019) SDF-1/CXCR4 signalling is involved in blood vessel growth and remodelling by intussusception. J Cell Mol Med 23:3916–3926PubMedPubMedCentralGoogle Scholar
  19. 19.
    Ding Q, Yoshimitsu M, Kuwahata T, Maeda K, Hayashi T, Obara T, Miyazaki Y, Matsubara S, Natsugoe S, Takao S (2012) Establishment of a highly migratory subclone reveals that CD133 contributes to migration and invasion through epithelial-mesenchymal transition in pancreatic cancer. Hum Cell 25:1–8PubMedGoogle Scholar
  20. 20.
    Fan M, Qian N, Dai G (2017) Expression and prognostic significance of doublecortin-like kinase 1 in patients with hepatocellular carcinoma. Oncol Lett 14:7529–7537PubMedPubMedCentralGoogle Scholar
  21. 21.
    Fargeas CA, Florek M, Huttner WB, Corbeil D (2003) Characterization of prominin-2, a new member of the prominin family of pentaspan membrane glycoproteins. J Biol Chem 278:8586–8596PubMedGoogle Scholar
  22. 22.
    Fazi B, Proserpio C, Galardi S, Annesi F, Cola M, Mangiola A, Michienzi A, Ciafre SA (2019) The expression of the chemokine CXCL14 correlates with several aggressive aspects of glioblastoma and promotes key properties of glioblastoma cells. Int J Mol Sci 20. Scholar
  23. 23.
    Florek M, Bauer N, Janich P, Wilsch-Braeuninger M, Fargeas CA, Marzesco AM, Ehninger G, Thiele C, Huttner WB, Corbeil D (2007) Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res 328:31–47PubMedGoogle Scholar
  24. 24.
    Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao X, Li W, Zheng S, Ye H, Wang L, He Z, Lin Q, Li Z, Chen R (2017) LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett 410:68–81PubMedGoogle Scholar
  25. 25.
    Fujiwara K, Ohuchida K, Sada M, Horioka K, Ulrich CD 3rd, Shindo K, Ohtsuka T, Takahata S, Mizumoto K, Oda Y, Tanaka M (2014) CD166/ALCAM expression is characteristic of tumorigenicity and invasive and migratory activities of pancreatic cancer cells. PLoS One 9:e107247PubMedPubMedCentralGoogle Scholar
  26. 26.
    Genkinger JM, Spiegelman D, Anderson KE, Bernstein L, van den Brandt PA, Calle EE, English DR, Folsom AR, Freudenheim JL, Fuchs CS, Giles GG, Giovannucci E, Horn-Ross PL, Larsson SC, Leitzmann M, Mannisto S, Marshall JR, Miller AB, Patel AV, Rohan TE, Stolzenberg-Solomon RZ, Verhage BA, Virtamo J, Willcox BJ, Wolk A, Ziegler RG, Smith-Warner SA (2011) A pooled analysis of 14 cohort studies of anthropometric factors and pancreatic cancer risk. Int J Cancer 129:1708–1717PubMedPubMedCentralGoogle Scholar
  27. 27.
    Giannakis M, Stappenbeck TS, Mills JC, Leip DG, Lovett M, Clifton SW, Ippolito JE, Glasscock JI, Arumugam M, Brent MR, Gordon JI (2006) Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 281:11292–11300PubMedGoogle Scholar
  28. 28.
    Glumac PM, LeBeau AM (2018) The role of CD133 in cancer: a concise review. Clin Transl Med 7:18–18PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hashimoto O, Shimizu K, Semba S, Chiba S, Ku Y, Yokozaki H, Hori Y (2011) Hypoxia induces tumor aggressiveness and the expansion of CD133-positive cells in a hypoxia-inducible factor-1alpha-dependent manner in pancreatic cancer cells. Pathobiol J Immunopathol, Mol Cell Biol 78:181–192Google Scholar
  30. 30.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ, Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedGoogle Scholar
  31. 31.
    Herreros-Villanueva M, Zubia-Olascoaga A, Bujanda L (2012) c-Met in pancreatic cancer stem cells: therapeutic implications. World J Gastroenterol 18:5321–5323PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hsu CP, Lee LY, Hsu JT, Hsu YP, Wu YT, Wang SY, Yeh CN, Chen TC, Hwang TL (2018) CD44 predicts early recurrence in pancreatic cancer patients undergoing radical surgery. In vivo (Athens, Greece) 32:1533–1540Google Scholar
  33. 33.
    Huynh DL, Koh H, Chandimali N, Zhang JJ, Kim N, Kang TY, Ghosh M, Gera M, Park Y-H, Kwon T, Jeong DK (2019) BRM270 inhibits the proliferation of CD44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic hedgehog signaling. Evid Based Complement Alternat Med 2019:8Google Scholar
  34. 34.
    Immervoll H, Hoem D, Sakariassen PØ, Steffensen OJ, Molven A (2008) Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer 8:48–48PubMedPubMedCentralGoogle Scholar
  35. 35.
    Ischenko I, Petrenko O, Hayman MJ (2014) Analysis of the tumor-initiating and metastatic capacity of PDX1-positive cells from the adult pancreas. Proc Natl Acad Sci U S A 111:3466–3471PubMedPubMedCentralGoogle Scholar
  36. 36.
    Ito H, Tanaka S, Akiyama Y, Shimada S, Adikrisna R, Matsumura S, Aihara A, Mitsunori Y, Ban D, Ochiai T, Kudo A, Arii S, Yamaoka S, Tanabe M (2016) Dominant expression of DCLK1 in human pancreatic cancer stem cells accelerates tumor invasion and metastasis. PLoS One 11:e0146564–e0146564PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jaggupilli A, Elkord E (2012) Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol 2012:708036PubMedPubMedCentralGoogle Scholar
  38. 38.
    Jarosz M, Sekula W, Rychlik E (2012) Influence of diet and tobacco smoking on pancreatic cancer incidence in Poland in 1960–2008. Gastroenterol Res Pract 2012:682156PubMedPubMedCentralGoogle Scholar
  39. 39.
    Jiang W, Sui X, Zhang D, Liu M, Ding M, Shi Y, Deng H (2011) CD24: a novel surface marker for PDX1-positive pancreatic progenitors derived from human embryonic stem cells. Stem Cells (Dayton, Ohio) 29:609–617Google Scholar
  40. 40.
    Kahlert C, Weber H, Mogler C, Bergmann F, Schirmacher P, Kenngott HG, Matterne U, Mollberg N, Rahbari NN, Hinz U, Koch M, Aigner M, Weitz J (2009) Increased expression of ALCAM/CD166 in pancreatic cancer is an independent prognostic marker for poor survival and early tumour relapse. Br J Cancer 101:457–464PubMedPubMedCentralGoogle Scholar
  41. 41.
    Kim WT, Ryu CJ (2017) Cancer stem cell surface markers on normal stem cells. BMB Rep 50:285–298PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kim MP, Fleming JB, Wang H, Abbruzzese JL, Choi W, Kopetz S, McConkey DJ, Evans DB, Gallick GE (2011) ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma. PLoS One 6:e20636PubMedPubMedCentralGoogle Scholar
  43. 43.
    Kiuchi S, Ikeshita S, Miyatake Y, Kasahara M (2015) Pancreatic cancer cells express CD44 variant 9 and multidrug resistance protein 1 during mitosis. Exp Mol Pathol 98:41–46PubMedGoogle Scholar
  44. 44.
    Koury J, Zhong L, Hao J (2017) Targeting signaling pathways in Cancer stem cells for Cancer treatment. Stem Cells Int 2017:10Google Scholar
  45. 45.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF, Simeone DM (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedGoogle Scholar
  46. 46.
    Li C, Lee CJ, Simeone DM (2009) Identification of human pancreatic cancer stem cells. Methods Mol Biol 568:161–173PubMedGoogle Scholar
  47. 47.
    Li C, Wu JJ, Hynes M, Dosch J, Sarkar B, Welling TH, Pasca di Magliano M, Simeone DM (2011) c-Met is a marker of pancreatic cancer stem cells and therapeutic target. Gastroenterology 141:2218–2227.e5PubMedGoogle Scholar
  48. 48.
    Li Z, Chen K, Jiang P, Zhang X, Li X, Li Z (2014) CD44v/CD44s expression patterns are associated with the survival of pancreatic carcinoma patients. Diagn Pathol 9:79PubMedPubMedCentralGoogle Scholar
  49. 49.
    Li X-P, Zhang X-W, Zheng L-Z, Guo W-J (2015) Expression of CD44 in pancreatic cancer and its significance. Int J Clin Exp Pathol 8:6724–6731PubMedPubMedCentralGoogle Scholar
  50. 50.
    Li J, Wang Y, Ge J, Li W, Yin L, Zhao Z, Liu S, Qin H, Yang J, Wang L, Ni B, Liu Y, Wang H (2018) Doublecortin-like kinase 1 (DCLK1) regulates B cell-specific Moloney murine leukemia virus insertion site 1 (Bmi-1) and is associated with metastasis and prognosis in pancreatic Cancer. Cell Physiol Biochem 51:262–277PubMedGoogle Scholar
  51. 51.
    Ling X, Wu W, Fan C, Xu C, Liao J, Rich LJ, Huang R-Y, Repasky EA, Wang X, Li F (2018) An ABCG2 non-substrate anticancer agent FL118 targets drug-resistant cancer stem-like cells and overcomes treatment resistance of human pancreatic cancer. J Exp Clin Cancer Res: CR 37:240–240PubMedGoogle Scholar
  52. 52.
    Litvinov SV, Velders MP, Bakker HA, Fleuren GJ, Warnaar SO (1994) Ep-CAM: a human epithelial antigen is a homophilic cell-cell adhesion molecule. J Cell Biol 125:437–446PubMedGoogle Scholar
  53. 53.
    Lubeseder-Martellato C, Hidalgo-Sastre A, Hartmann C, Alexandrow K, Kamyabi-Moghaddam Z, Sipos B, Wirth M, Neff F, Reichert M, Heid I, Schneider G, Braren R, Schmid RM, Siveke JT (2016) Membranous CD24 drives the epithelial phenotype of pancreatic cancer. Oncotarget 7:49156–49168PubMedPubMedCentralGoogle Scholar
  54. 54.
    Maccalli C, Volonte A, Cimminiello C, Parmiani G (2014) Immunology of cancer stem cells in solid tumours. A review. Eur J Cancer 50:649–655PubMedGoogle Scholar
  55. 55.
    Maisonneuve P, Lowenfels AB (2014) Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol 44:186–198PubMedGoogle Scholar
  56. 56.
    May R, Riehl TE, Hunt C, Sureban SM, Anant S, Houchen CW (2008) Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells (Dayton, Ohio) 26:630–637Google Scholar
  57. 57.
    Meng Y, Xu B-Q, Fu Z-G, Wu B, Xu B, Chen Z-N, Li L (2015) Cytoplasmic EpCAM over-expression is associated with favorable clinical outcomes in pancreatic cancer patients with Hepatitis B virus negative infection. Int J Clin Exp Med 8:22204–22216PubMedPubMedCentralGoogle Scholar
  58. 58.
    Michieli P, Mazzone M, Basilico C, Cavassa S, Sottile A, Naldini L, Comoglio PM (2004) Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell 6:61–73PubMedGoogle Scholar
  59. 59.
    Moreb J, Schweder M, Suresh A, Zucali JR (1996) Overexpression of the human aldehyde dehydrogenase class I results in increased resistance to 4-hydroperoxycyclophosphamide. Cancer Gene Ther 3:24–30PubMedGoogle Scholar
  60. 60.
    Noguchi K, Konno M, Eguchi H, Kawamoto K, Mukai R, Nishida N, Koseki J, Wada H, Akita H, Satoh T, Marubashi S, Nagano H, Doki Y, Mori M, Ishii H (2018) c-Met affects gemcitabine resistance during carcinogenesis in a mouse model of pancreatic cancer. Oncol Lett 16:1892–1898PubMedPubMedCentralGoogle Scholar
  61. 61.
    Nomura A, Banerjee S, Chugh R, Dudeja V, Yamamoto M, Vickers SM, Saluja AK (2015) CD133 initiates tumors, induces epithelial-mesenchymal transition and increases metastasis in pancreatic cancer. Oncotarget 6:8313–8322PubMedPubMedCentralGoogle Scholar
  62. 62.
    Ohara Y, Oda T, Sugano M, Hashimoto S, Enomoto T, Yamada K, Akashi Y, Miyamoto R, Kobayashi A, Fukunaga K, Morishita Y, Ohkohchi N (2013) Histological and prognostic importance of CD44(+) /CD24(+) /EpCAM(+) expression in clinical pancreatic cancer. Cancer Sci 104:1127–1134PubMedGoogle Scholar
  63. 63.
    Pan WL, Wang Y, Hao Y, Wong JH, Chan WC, Wan DC, Ng TB (2018) Overexpression of CXCR4 synergizes with LL-37 in the metastasis of breast cancer cells. Biochim Biophys Acta Mol basis Dis 1864:3837–3846PubMedGoogle Scholar
  64. 64.
    Patriarca C, Macchi RM, Marschner AK, Mellstedt H (2012) Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer Treat Rev 38:68–75PubMedGoogle Scholar
  65. 65.
    Pothula SP, Xu Z, Goldstein D, Biankin AV, Pirola RC, Wilson JS, Apte MV (2016) Hepatocyte growth factor inhibition: a novel therapeutic approach in pancreatic cancer. Br J Cancer 114:269PubMedPubMedCentralGoogle Scholar
  66. 66.
    Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16:41–41PubMedPubMedCentralGoogle Scholar
  67. 67.
    Rall CJ, Rustgi AK (1995) CD44 isoform expression in primary and metastatic pancreatic adenocarcinoma. Cancer Res 55:1831–1835PubMedGoogle Scholar
  68. 68.
    Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, Hong SM, Koorstra JB, Rajeshkumar NV, He X, Goggins M, Iacobuzio-Donahue C, Berman DM, Laheru D, Jimeno A, Hidalgo M, Maitra A, Matsui W (2010) Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst 102:340–351PubMedPubMedCentralGoogle Scholar
  69. 69.
    Rawla P, Sunkara T, Gaduputi V (2019) Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J Oncol 10:10–27PubMedPubMedCentralGoogle Scholar
  70. 70.
    Sakaue T, Koga H, Iwamoto H, Nakamura T, Ikezono Y, Abe M, Wada F, Masuda A, Tanaka T, Fukahori M, Ushijima T, Mihara Y, Naitou Y, Okabe Y, Kakuma T, Ohta K, Nakamura KI, Torimura T (2019) Glycosylation of ascites-derived exosomal CD133: a potential prognostic biomarker in patients with advanced pancreatic cancer. Med Mol Morphol. Scholar
  71. 71.
    Salaria S, Means A, Revetta F, Idrees K, Liu E, Shi C (2015) Expression of CD24, a stem cell marker, in pancreatic and small intestinal neuroendocrine tumors. Am J Clin Pathol 144:642–648PubMedPubMedCentralGoogle Scholar
  72. 72.
    Saur D, Seidler B, Schneider G, Algul H, Beck R, Senekowitsch-Schmidtke R, Schwaiger M, Schmid RM (2005) CXCR4 expression increases liver and lung metastasis in a mouse model of pancreatic cancer. Gastroenterology 129:1237–1250PubMedGoogle Scholar
  73. 73.
    Shakir M, Tang D, Zeh HJ, Tang SW, Anderson CJ, Bahary N, Lotze MT (2015) The chemokine receptors CXCR4/CXCR7 and their primary heterodimeric ligands CXCL12 and CXCL12/high mobility group box 1 in pancreatic cancer growth and development: finding flow. Pancreas 44:528–534PubMedGoogle Scholar
  74. 74.
    Singh S, Srivastava SK, Bhardwaj A, Owen LB, Singh AP (2010) CXCL12-CXCR4 signalling axis confers gemcitabine resistance to pancreatic cancer cells: a novel target for therapy. Br J Cancer 103:1671–1679PubMedPubMedCentralGoogle Scholar
  75. 75.
    Singh S, Arcaroli JJ, Orlicky DJ, Chen Y, Messersmith WA, Bagby S, Purkey A, Quackenbush KS, Thompson DC, Vasiliou V (2016) Aldehyde dehydrogenase 1B1 as a modulator of pancreatic adenocarcinoma. Pancreas 45:117–122PubMedPubMedCentralGoogle Scholar
  76. 76.
    Sobek KM, Cummings JL, Bacich DJ, O’Keefe DS (2017) Contrasting roles of the ABCG2 Q141K variant in prostate cancer. Exp Cell Res 354:40–47PubMedPubMedCentralGoogle Scholar
  77. 77.
    Sugahara KN, Hirata T, Hayasaka H, Stern R, Murai T, Miyasaka M (2006) Tumor cells enhance their own CD44 cleavage and motility by generating hyaluronan fragments. J Biol Chem 281:5861–5868PubMedGoogle Scholar
  78. 78.
    Suzuki A, Nakauchi H, Taniguchi H (2004) Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53:2143–2152PubMedGoogle Scholar
  79. 79.
    Tachezy M, Zander H, Marx AH, Stahl PR, Gebauer F, Izbicki JR, Bockhorn M (2012) ALCAM (CD166) expression and serum levels in pancreatic cancer. PLoS One 7:e39018–e39018PubMedPubMedCentralGoogle Scholar
  80. 80.
    Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27:13–24PubMedGoogle Scholar
  81. 81.
    Todaro M, Francipane MG, Medema JP, Stassi G (2010) Colon cancer stem cells: promise of targeted therapy. Gastroenterology 138:2151–2162PubMedPubMedCentralGoogle Scholar
  82. 82.
    Tomita H, Tanaka K, Tanaka T, Hara A (2016) Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7:11018–11032PubMedPubMedCentralGoogle Scholar
  83. 83.
    Trzpis M, McLaughlin PMJ, de Leij LMFH, Harmsen MC (2007) Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol 171:386–395PubMedPubMedCentralGoogle Scholar
  84. 84.
    Ulasov IV, Nandi S, Dey M, Sonabend AM, Lesniak MS (2011) Inhibition of sonic hedgehog and notch pathways enhances sensitivity of CD133(+) glioma stem cells to temozolomide therapy. Mol Med (Cambridge, Mass.) 17:103–112Google Scholar
  85. 85.
    van der Gun BT, Melchers LJ, Ruiters MH, de Leij LF, McLaughlin PM, Rots MG (2010) EpCAM in carcinogenesis: the good, the bad or the ugly. Carcinogenesis 31:1913–1921PubMedGoogle Scholar
  86. 86.
    Vander Linden C, Corbet C (2019) Therapeutic targeting of cancer stem cells: integrating and exploiting the acidic niche. Front Oncol 9:159PubMedPubMedCentralGoogle Scholar
  87. 87.
    Vassalli G (2019) Aldehyde dehydrogenases: not just markers, but functional regulators of stem cells. Stem Cells Int 2019:15Google Scholar
  88. 88.
    Wang J, Xin B, Wang H, He X, Wei W, Zhang T, Shen X (2016) Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-kappaB signaling. Exp Cell Res 346:74–84PubMedGoogle Scholar
  89. 89.
    Wang X, Cao Y, Zhang S, Chen Z, Fan L, Shen X, Zhou S, Chen D (2017) Stem cell autocrine CXCL12/CXCR4 stimulates invasion and metastasis of esophageal cancer. Oncotarget 8:36149–36160PubMedPubMedCentralGoogle Scholar
  90. 90.
    Wang RQ, Geng J, Sheng WJ, Liu XJ, Jiang M, Zhen YS (2019) The ionophore antibiotic gramicidin A inhibits pancreatic cancer stem cells associated with CD47 down-regulation. Cancer Cell Int 19:145PubMedPubMedCentralGoogle Scholar
  91. 91.
    Westover D, Li F (2015) New trends for overcoming ABCG2/BCRP-mediated resistance to cancer therapies. J Exp Clin Cancer Res: CR 34:159PubMedGoogle Scholar
  92. 92.
    Yamamoto T, Yagi S, Kinoshita H, Sakamoto Y, Okada K, Uryuhara K, Morimoto T, Kaihara S, Hosotani R (2015) Long-term survival after resection of pancreatic cancer: a single-center retrospective analysis. World J Gastroenterol 21:262–268PubMedPubMedCentralGoogle Scholar
  93. 93.
    Yan B, Jiang Z, Cheng L, Chen K, Zhou C, Sun L, Qian W, Li J, Cao J, Xu Q, Ma Q, Lei J (2018) Paracrine HGF/c-MET enhances the stem cell-like potential and glycolysis of pancreatic cancer cells via activation of YAP/HIF-1α. Exp Cell Res 371:63–71PubMedGoogle Scholar
  94. 94.
    Yuan Y, Yang Z, Miao X, Li D, Liu Z, Zou Q (2015) The clinical significance of FRAT1 and ABCG2 expression in pancreatic ductal adenocarcinoma. Tumour Biol 36:9961–9968PubMedGoogle Scholar
  95. 95.
    Zhan T, Rindtorff N, Boutros M (2017) Wnt signaling in cancer. Oncogene 36:1461–1473PubMedPubMedCentralGoogle Scholar
  96. 96.
    Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL, Lei QY (2014) NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest 124:5453–5465PubMedPubMedCentralGoogle Scholar
  97. 97.
    Zhao S, Chen C, Chang K, Karnad A, Jagirdar J, Kumar AP, Freeman JW (2016) CD44 expression level and isoform contributes to pancreatic Cancer cell plasticity, invasiveness, and response to therapy. Clin Cancer Res 22:5592–5604PubMedPubMedCentralGoogle Scholar
  98. 98.
    Zhou B, Sun C, Hu X, Zhan H, Zou H, Feng Y, Qiu F, Zhang S, Wu L, Zhang B (2017) MicroRNA-195 suppresses the progression of pancreatic cancer by targeting DCLK1. Cell Physiol Biochem 44:1867–1881PubMedGoogle Scholar
  99. 99.
    Zhu L, Finkelstein D, Gao C, Shi L, Wang Y, Lopez-Terrada D, Wang K, Utley S, Pounds S, Neale G, Ellison D, Onar-Thomas A, Gilbertson RJ (2016) Multi-organ mapping of cancer risk. Cell 166:1132–1146.e7PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • L. Saikrishna
    • 1
  • Prameswari Kasa
    • 2
  • Saimila Momin
    • 3
  • L. V. K. S. Bhaskar
    • 4
    Email author
  1. 1.Department of ZoologyVisvodaya Government Degree CollegeVenkatagiriIndia
  2. 2.Dr. LV Prasad Diagnostics and Research LaboratoryHyderabadIndia
  3. 3.Department of Hematology and Medical Oncology, Winship Cancer InstituteEmory UniversityAtlantaUSA
  4. 4.Guru Ghasidas VishwavidyalayaBilaspurIndia

Personalised recommendations