Skip to main content

Role of Mitochondria in Pancreatic Metabolism, Diabetes, and Cancer

  • Chapter
  • First Online:
Exploring Pancreatic Metabolism and Malignancy

Abstract

Ever since from the discovery of mitochondria, it attracted the field of medicine due to its involvement in numerous aspects of cellular metabolism. Mitochondria, the powerhouse of the cell, are extremely important for maintenance of several vital processes such as TCA cycle, generation of cellular energy source adenosine triphosphate (ATP), cell growth, cell death, and signal transduction. Therefore, it is evident that any type of mitochondrial perturbations would result in myriad of diseases. Mitochondrial diseases are also results from nuclear DNA mutations because most proteins involved in mitochondrial metabolism and mitochondrial DNA maintenance are nuclear encoded. Mitochondrial DNA variations are also observed in aging, diabetes, cancer, and neurological diseases such as Parkinson’s and Alzheimer’s diseases. So far, the research accentuated the relationship between mitochondrial dysfunction and multitude of diseases. Pancreas is one such organ that is frequently affected by mitochondrial perturbations. Over the past decade, significant amount of research has been done on mitochondria in pancreatic dysfunction. Heretofore, accumulating evidences suggest that pancreatitis, diabetes, and pancreatic cancer have highlighted the relationship with mitochondrial dysfunction. In this book chapter, we explore the advances that have been made toward identifying the mitochondria as therapeutic target in pancreatic malignancies including pancreatic metabolism, diabetes, and cancer.

Co-correspond author: Noble Kumar Talari.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

αKG:

Alpha-ketoglutarate

β-Lap:

β-Lapachone

Ala:

Alanine

AM:

Adrenomedullin

ARE:

Antioxidant response element

ASK1:

Akt-stimulated phosphorylation of apoptosis signal-regulating kinase 1

Asp:

Aspartate

BPTES:

Bis-2-(5-phenylacetamido-1,3,4-thaidazole-2-yl) ethyl sulfide

Cit:

Citrate

Cys:

Cysteine

DON:

6-Diazo-5-oxo-L-norleucine

ER:

Endoplasmic reticulum

Fum:

Fumarate

GCL:

Glutamate cysteine ligase

GEM:

Gemcitabine

Gln:

Glutamine

Glu:

Glutamate

GLUD1:

Glutamate dehydrogenase

Gly:

Glycine

GOT:

Aspartate transaminase

GS:

Glutathione synthase

HA:

Hyaluronan or hyaluronic acid

HBP:

Hexosamine biosynthetic pathway

HIF:

Hypoxia inducible factors

IGF-1:

Insulin-responsive growth factor

Iso:

Isocitrate

Lac:

Lactate

LDHA:

Lactate dehydrogenase A

Mal:

Malate

MDH:

Malate dehydrogenase

Met:

Metformin

MMP:

Matrix metallo proteinase

NOX:

NADH oxidase

NQO1:

NADPH-quinone oxido-reductase 1

NR5A2:

Nuclear receptor 5 A2

NRF2:

Nuclear factor erythroid 2-related factor 2

OAA:

Oxaloacetate

OAA:

Oxaloacetic acid

PDAC:

Pancreatic ductal adenocarcinoma

PPP:

Pentose phosphate pathway

PTEN:

Phosphatase and tensin homolog

Pyr:

Pyruvate

R5P:

Ribose 5-phosphate

ROS:

Reactive oxygen species

Suc:

Succinate

T2DM:

Type2 diabetes mellitus

TCA:

Tricarboxylic acid cycle

UCP2:

Uncoupling protein 2

UDP-GlcNAC:

Uridine diphosphate N-acetylglucosamine

References

  1. Abrego J, Gunda V, Vernucci E, Shukla SK, King RJ, Dasgupta A, Goode G, Murthy D, Yu F, Singh PK (2017) GOT1-mediated anaplerotic glutamine metabolism regulates chronic acidosis stress in pancreatic cancer cells. Cancer Lett 400:37–46. https://doi.org/10.1016/j.canlet.2017.04.029. Epub 2017 Apr 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, Klee EW, Smyrk TC, Bamlet W, Han JJ, Rumie Vittar NB, de Andrade M, Mukhopadhyay D, Petersen GM, Fernandez-Zapico ME, Logsdon CD, Chari ST (2012) Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice. Gastroenterology 143(6):1510–1517.e1. https://doi.org/10.1053/j.gastro.2012.08.044. Epub 2012 Sep 6

    Article  CAS  PubMed  Google Scholar 

  3. Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, Fajardo F, Jackson A, Zondlo J, Sun Y, Ellison AR, Plewa CA, San MT, Robinson J, McCarter J, Schwandner R, Judd T, Carnahan J, Dussault I (2011) STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res 71(17):5818–5826. https://doi.org/10.1158/0008-5472.CAN-11-0778. Epub 2011 Jul 8

    Article  CAS  PubMed  Google Scholar 

  4. Basso D, Greco E, Fogar P, Pucci P, Flagiello A, Baldo G, Giunco S, Valerio A, Navaglia F, Zambon CF, Falda A, Pedrazzoli S, Plebani M (2006) Pancreatic cancer-derived S-100A8 N-terminal peptide: a diabetes cause? Clin Chim Acta 372(1–2):120–128. Epub 2006 Mar 29

    CAS  PubMed  Google Scholar 

  5. Batty GD, Shipley MJ, Marmot M, Smith GD (2004) Diabetes status and post-load plasma glucose concentration in relation to site-specific cancer mortality: findings from the original Whitehall study. Cancer Causes Control 15(9):873–881

    PubMed  Google Scholar 

  6. Ben Sahra I, Regazzetti C, Robert G, Laurent K, Le Marchand-Brustel Y, Auberger P, Tanti JF, Giorgetti-Peraldi S, Bost F (2011) Metformin, independent of AMPK, induces mTOR inhibition and cell-cycle arrest through REDD1. Cancer Res 71(13):4366–4372. https://doi.org/10.1158/0008-5472.CAN-10-1769. Epub 2011 May 3

    Article  CAS  PubMed  Google Scholar 

  7. Biancur DE, Paulo JA, Małachowska B, Quiles Del Rey M, Sousa CM, Wang X, Sohn ASW, Chu GC, Gygi SP, Harper JW, Fendler W, Mancias JD, Kimmelman AC (2017) Compensatory metabolic networks in pancreatic cancers upon perturbation of glutamine metabolism. Nat Commun 8:15965. https://doi.org/10.1038/ncomms15965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Birsoy K, Sabatini DM, Possemato R (2012) Untuning the tumor metabolic machine: targeting cancer metabolism: a bedside lesson. Nat Med 18(7):1022–1023. https://doi.org/10.1038/nm.2870

    Article  CAS  PubMed  Google Scholar 

  9. Bockler S (2014) Westermann B Mitochondrial ER contacts are crucial for mitophagy in yeast. Dev Cell 28(4):450–458. https://doi.org/10.1016/j.devcel.2014.01.012. Epub 2014 Feb 13

    Article  CAS  PubMed  Google Scholar 

  10. Brandon M, Baldi P, Wallace DC (2006) Mitochondrial mutations in cancer. Oncogene 25(34):4647–4662

    CAS  PubMed  Google Scholar 

  11. Bridges HR, Jones AJ, Pollak MN, Hirst J (2014) Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J 462(3):475–487. https://doi.org/10.1042/BJ20140620

    Article  CAS  PubMed  Google Scholar 

  12. Cadavez L, Montane J, Alcarraz-Vizán G, Visa M, Vidal-Fàbrega L, Servitja JM, Novials A (2014) Chaperones ameliorate beta cell dysfunction associated with human islet amyloid polypeptide overexpression. PLoS One 9(7):e101797. https://doi.org/10.1371/journal.pone.0101797. eCollection 2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chakrabarti G, Moore ZR, Luo X, Ilcheva M, Ali A, Padanad M, Zhou Y, Xie Y, Burma S, Scaglioni PP, Cantley LC, DeBerardinis RJ, Kimmelman AC, Lyssiotis CA, Boothman DA (2015) Targeting glutamine metabolism sensitizes pancreatic cancer to PARP-driven metabolic catastrophe induced by ß-lapachone. Cancer Metab 3:12. https://doi.org/10.1186/s40170-015-0137-1. eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chari ST, Leibson CL, Rabe KG, Timmons LJ, Ransom J, de Andrade M, Petersen GM (2008) Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology 134(1):95–101. Epub 2007 Oct 26

    CAS  PubMed  Google Scholar 

  15. Chen R, Lai LA, Sullivan Y, Wong M, Wang L, Riddell J, Jung L, Pillarisetty VG, Brentnall TA, Pan S (2017) Disrupting glutamine metabolic pathways to sensitize gemcitabine-resistant pancreatic cancer. Sci Rep 7(1):7950. https://doi.org/10.1038/s41598-017-08436-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng G, Zielonka J, McAllister D, Tsai S, Dwinell MB, Kalyanaraman B (2014) Profiling and targeting of cellular bioenergetics: inhibition of pancreatic cancer cell proliferation. Br J Cancer 111(1):85–93. https://doi.org/10.1038/bjc.2014.272. Epub 2014 May 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chiaradonna F, Magnani C, Sacco E, Manzoni R, Alberghina L, Vanoni M (2005) Acquired glucose sensitivity of k-ras transformed fibroblasts. Biochem Soc Trans 33(Pt 1):297–299

    CAS  PubMed  Google Scholar 

  18. Chiaradonna F, Sacco E, Manzoni R, Giorgio M, Vanoni M, Alberghina L (2006) Ras-dependent carbon metabolism and transformation in mouse fibroblasts. Oncogene 25(39):5391–5404. Epub 2006 Apr 10

    CAS  PubMed  Google Scholar 

  19. Chun SY, Johnson C, Washburn JG, Cruz-Correa MR, Dang DT, Dang LH (2010) Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes. Mol Cancer 9:293. https://doi.org/10.1186/1476-4598-9-293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ, Hackett S, Grabocka E, Nofal M, Drebin JA, Thompson CB, Rabinowitz JD, Metallo CM, Vander Heiden MG, Bar-Sagi D (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497(7451):633–637. https://doi.org/10.1038/nature12138. Epub 2013 May 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cullen JJ, Weydert C, Hinkhouse MM, Ritchie J, Domann FE, Spitz D, Oberley LW (2003) The role of manganese superoxide dismutase in the growth of pancreatic adenocarcinoma. Cancer Res 63(6):1297–1303

    CAS  PubMed  Google Scholar 

  22. Cust AE, Kaaks R, Friedenreich C, Bonnet F, Laville M, Lukanova A, Rinaldi S, Dossus L, Slimani N, Lundin E, Tjønneland A, Olsen A, Overvad K, Clavel-Chapelon F, Mesrine S, Joulin V, Linseisen J, Rohrmann S, Pischon T, Boeing H, Trichopoulos D, Trichopoulou A, Benetou V, Palli D, Berrino F, Tumino R, Sacerdote C, Mattiello A, Quirós JR, Mendez MA, Sánchez MJ, Larrañaga N, Tormo MJ, Ardanaz E, Bueno-de-Mesquita HB, Peeters PH, van Gils CH, Khaw KT, Bingham S, Allen N, Key T, Jenab M, Riboli E (2007) Plasma adiponectin levels and endometrial cancer risk in pre- and postmenopausal women. J Clin Endocrinol Metab 92(1):255–263. Epub 2006 Oct 24

    CAS  PubMed  Google Scholar 

  23. Dann SG, Selvaraj A, Thomas G (2007) mTOR Complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13(6):252–259. Epub 2007 Apr 23

    CAS  PubMed  Google Scholar 

  24. Deas E, Piipari K, Machhada A, Li A, Gutierrez-del-Arroyo A, Withers DJ, Wood NW, Abramov AY (2014) PINK1 deficiency in β-cells increases basal insulin secretion and improves glucose tolerance in mice. Open Biol 4:140051. https://doi.org/10.1098/rsob.140051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeNicola GM, Karreth FA, Humpton TJ, Gopinathan A, Wei C, Frese K, Mangal D, Yu KH, Yeo CJ, Calhoun ES, Scrimieri F, Winter JM, Hruban RH, Iacobuzio-Donahue C, Kern SE, Blair IA, Tuveson DA (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475(7354):106–109. https://doi.org/10.1038/nature10189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli MT, Scarpa A, Zappavigna S, Marra M, Abbruzzese A, Bifulco M, Caraglia M, Palmieri M (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2:e152. https://doi.org/10.1038/cddis.2011.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dowling RJ, Niraula S, Chang MC, Done SJ, Ennis M, McCready DR, Leong WL, Escallon JM, Reedijk M, Goodwin PJ, Stambolic V (2015) Changes in insulin receptor signaling underlie neoadjuvant metformin administration in breast cancer: a prospective window of opportunity neoadjuvant study. Breast Cancer Res 17:32. https://doi.org/10.1186/s13058-015-0540-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Du J, Liu J, Smith BJ, Tsao MS, Cullen JJ (2011) Role of Rac1-dependent NADPH oxidase in the growth of pancreatic cancer. Cancer Gene Ther 18(2):135–143. https://doi.org/10.1038/cgt.2010.64. Epub 2010 Oct 29

    Article  CAS  PubMed  Google Scholar 

  29. Duncan LJ, Seaton DA (1962) The treatment of diabetes mellitus with metformin. Br J Clin Pract 16:129–132

    CAS  PubMed  Google Scholar 

  30. Everhart J, Wright D (1995) Diabetes mellitus as a risk factor for pancreatic cancer. A meta-analysis. JAMA 273(20):1605–1609

    CAS  PubMed  Google Scholar 

  31. Fan Y, Gan Y, Shen Y, Cai X, Song Y, Zhao F, Yao M, Gu J, Tu H (2015) Leptin signaling enhances cell invasion and promotes the metastasis of human pancreatic cancer via increasing MMP-13 production. Oncotarget 6(18):16120–16134

    PubMed  PubMed Central  Google Scholar 

  32. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL (2007) Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J Cell Biol 179(3):403–410

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7:523. https://doi.org/10.1038/msb.2011.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gapstur SM, Gann PH, Lowe W, Liu K, Colangelo L, Dyer A (2000) Abnormal glucose metabolism and pancreatic cancer mortality. JAMA 283(19):2552–2558

    CAS  PubMed  Google Scholar 

  35. Gasparre G, Porcelli AM, Lenaz G, Romeo G (2013) Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harb Perspect Biol 5(2):pii: a011411. https://doi.org/10.1101/cshperspect.a011411

    Article  CAS  Google Scholar 

  36. Gebregiworgis T, Purohit V, Shukla SK, Tadros S, Chaika NV, Abrego J, Mulder SE, Gunda V, Singh PK (2017) Powers R1 glucose limitation alters glutamine metabolism in MUC1-overexpressing pancreatic Cancer cells. J Proteome Res 16(10):3536–3546. https://doi.org/10.1021/acs.jproteome.7b00246. Epub 2017 Aug 30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gross MI, Demo SD, Dennison JB, Chen L, Chernov-Rogan T, Goyal B, Janes JR, Laidig GJ, Lewis ER, Li J, Mackinnon AL, Parlati F, Rodriguez ML, Shwonek PJ, Sjogren EB, Stanton TF, Wang T, Yang J, Zhao F (2014) Bennett MK antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther 13(4):890–901. https://doi.org/10.1158/1535-7163.MCT-13-0870. Epub 2014 Feb 12

    Article  CAS  PubMed  Google Scholar 

  38. Guillaumond F, Leca J, Olivares O, Lavaut MN, Vidal N, Berthezène P, Dusetti NJ, Loncle C, Calvo E, Turrini O, Iovanna JL, Tomasini R, Vasseur S (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc Natl Acad Sci USA 110(10):3919–3924. https://doi.org/10.1073/pnas.1219555110. Epub 2013 Feb 13

    Article  PubMed  PubMed Central  Google Scholar 

  39. Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316. https://doi.org/10.1210/er.2007-0037. Epub 2008 Feb 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halbrook CJ, Lyssiotis CA (2017) Employing metabolism to improve the diagnosis and treatment of pancreatic cancer. Cancer Cell 31(1):5–19. https://doi.org/10.1016/j.ccell.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  41. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, Oomori H, Noda T, Haraguchi T, Hiraoka Y, Amano A, Yoshimori T (2013) Autophagosomes form at ER-mitochondria contact sites. Nature 495(7441):389–393. https://doi.org/10.1038/nature11910. Epub 2013 Mar 3

    Article  CAS  PubMed  Google Scholar 

  42. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. https://doi.org/10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  43. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    CAS  PubMed  Google Scholar 

  44. Hernandez MG, Aguilar AG, Burillo J, Oca RG, Manca MA, Novials A, Alcarraz-Vizan G (2018) Guillén C3,4, Benito M1,5. Pancreatic β cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis 9(5):481. https://doi.org/10.1038/s41419-018-0533-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Holmstrom KM, Finkel T (2014) Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat Rev Mol Cell Biol 15(6):411–421. https://doi.org/10.1038/nrm3801

    Article  CAS  PubMed  Google Scholar 

  46. Hoshino A, Ariyoshi M, Okawa Y, Kaimoto S, Uchihashi M, Fukai K, Iwai-Kanai E, Ikeda K, Ueyama T, Ogata T, Matoba S (2014) Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic β-cell function in diabetes. Proc Natl Acad Sci USA 111(8):3116–3121. https://doi.org/10.1073/pnas.1318951111. Epub 2014 Feb 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu Y, Lu W, Chen G, Wang P, Chen Z, Zhou Y, Ogasawara M, Trachootham D, Feng L, Pelicano H, Chiao PJ, Keating MJ, Garcia-Manero G, Huang P (2012) K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 22(2):399–412. https://doi.org/10.1038/cr.2011.145. Epub 2011 Aug 30

    Article  CAS  PubMed  Google Scholar 

  48. Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89(8):3629–3643

    CAS  PubMed  Google Scholar 

  49. Huxley R, Ansary-Moghaddam A, Berrington de González A, Barzi F, Woodward M (2005) Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer 92(11):2076–2083

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Jacobetz MA, Chan DS, Neesse A, Bapiro TE, Cook N, Frese KK, Feig C, Nakagawa T, Caldwell ME, Zecchini HI, Lolkema MP, Jiang P, Kultti A, Thompson CB, Maneval DC, Jodrell DI, Frost GI, Shepard HM, Skepper JN, Tuveson DA (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer. Gut 62(1):112–120. https://doi.org/10.1136/gutjnl-2012-302529. Epub 2012 Mar 30

    Article  CAS  PubMed  Google Scholar 

  51. Jeong SM, Hwang S, Seong RH (2016) Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun 471(3):373–379. https://doi.org/10.1016/j.bbrc.2016.02.023. Epub 2016 Feb 8

    Article  CAS  PubMed  Google Scholar 

  52. Jia ZY, Shen TY, Jiang W, Qin HL (2017) Identification of molecular mechanisms of glutamine in pancreatic cancer. Oncol Lett 14(6):6395–6402. https://doi.org/10.3892/ol.2017.7068. Epub 2017 Sep 26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kalender A, Selvaraj A, Kim SY, Gulati P, Brûlé S, Viollet B, Kemp BE, Bardeesy N, Dennis P, Schlager JJ, Marette A, Kozma SC, Thomas G (2010) Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 11(5):390–401. https://doi.org/10.1016/j.cmet.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Karnoub AE, Weinberg RA (2008) Ras oncogenes: split personalities. Nat Rev Mol Cell Biol 9(7):517–531. https://doi.org/10.1038/nrm2438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Khaled AR, Kim K, Hofmeister R, Muegge K, Durum SK (1999) Withdrawal of IL-7 induces Bax translocation from cytosol to mitochondria through a rise in intracellular pH. Proc Natl Acad Sci USA 96(25):14476–14481

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kisfalvi K, Moro A, Sinnett-Smith J, Eibl G, Rozengurt E (2013) Metformin inhibits the growth of human pancreatic cancer xenografts. Pancreas 42(5):781–785. https://doi.org/10.1097/MPA.0b013e31827aec40

    Article  CAS  PubMed  Google Scholar 

  57. Krishnan KJ, Greaves LC, Reeve AK, Turnbull DM (2007) Mitochondrial DNA mutations and aging. Ann N Y Acad Sci 1100:227–240

    CAS  PubMed  Google Scholar 

  58. Kwong SC, Brubacher J (1998) Phenformin and lactic acidosis: a case report and review. J Emerg Med 16(6):881–886

    CAS  PubMed  Google Scholar 

  59. Lau ST, Lin ZX, Leung PS (2010) Role of reactive oxygen species in brucein D-mediated p38-mitogen-activated protein kinase and nuclear factor-kappaB signalling pathways in human pancreatic adenocarcinoma cells. Br J Cancer 102(3):583–593. https://doi.org/10.1038/sj.bjc.6605487. Epub 2010 Jan 12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lee JK, Edderkaoui M, Truong P, Ohno I, Jang KT, Berti A, Pandol SJ (2007) Gukovskaya AS NADPH oxidase promotes pancreatic cancer cell survival via inhibiting JAK2 dephosphorylation by tyrosine phosphatases. Gastroenterology 133(5):1637–1648. Epub 2007 Aug 14

    CAS  PubMed  Google Scholar 

  61. Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344. https://doi.org/10.1126/science.1193494

    Article  CAS  PubMed  Google Scholar 

  62. Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, Liu L, Liu C, Luo G, Ni Q, Xu J, Yu X (2016) Energy sources identify metabolic phenotypes in pancreatic cancer. Acta Biochim Biophys Sin Shanghai 48(11):969–979. Epub 2016 Sep 20

    CAS  PubMed  Google Scholar 

  63. Liao C, Hu B, Arno MJ, Panaretou B (2007) Genomic screening in vivo reveals the role played by vacuolar H+ ATPase and cytosolic acidification in sensitivity to DNA-damaging agents such as cisplatin. Mol Pharmacol 71(2):416–425. Epub 2006 Nov 8

    CAS  PubMed  Google Scholar 

  64. Liou GY, Döppler H, DelGiorno KE, Zhang L, Leitges M, Crawford HC, Murphy MP, Storz P (2016) Mutant KRas-induced mitochondrial oxidative stress in acinar cells upregulates EGFR signaling to drive formation of pancreatic precancerous lesions. Cell Rep 14(10):2325–2336. https://doi.org/10.1016/j.celrep.2016.02.029. Epub 2016 Mar 3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu H, Koshkin V, Allister EM, Gyulkhandanyan AV, Wheeler MB (2010) Molecular and metabolic evidence for mitochondrial defects associated with beta-cell dysfunction in a mouse model of type 2 diabetes. Diabetes 59(2):448–459. https://doi.org/10.2337/db09-0129. Epub 2009 Nov 10

    Article  CAS  PubMed  Google Scholar 

  66. Lu W, Hu Y, Chen G, Chen Z, Zhang H, Wang F, Feng L, Pelicano H, Wang H, Keating MJ, Liu J, McKeehan W, Wang H, Luo Y, Huang P (2012) Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy. PLoS Biol 10(5):e1001326. https://doi.org/10.1371/journal.pbio.1001326. Epub 2012 May 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Luo T, Masson K, Jaffe JD, Silkworth W, Ross NT, Scherer CA, Scholl C, Fröhling S, Carr SA, Stern AM, Schreiber SL, Golub TR (2012) STK33 kinase inhibitor BRD-8899 has no effect on KRAS-dependent cancer cell viability. Proc Natl Acad Sci USA 109(8):2860–2865. https://doi.org/10.1073/pnas.1120589109. Epub 2012 Feb 9

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lycan TW, Pardee TS, Petty WJ, Bonomi M, Alistar A, Lamar ZS, Isom S, Chan MD, Miller AA, Ruiz J (2016) A phase II clinical trial of CPI-613 in patients with relapsed or refractory small cell lung carcinoma. PLoS One 11(10):e0164244. https://doi.org/10.1371/journal.pone.0164244. eCollection 2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ma J, Sawai H, Matsuo Y, Ochi N, Yasuda A, Takahashi H, Wakasugi T, Funahashi H, Sato M, Takeyama H (2010) IGF-1 mediates PTEN suppression and enhances cell invasion and proliferation via activation of the IGF-1/PI3K/Akt signaling pathway in pancreatic cancer cells. J Surg Res 160(1):90–101. https://doi.org/10.1016/j.jss.2008.08.016. Epub 2008 Sep 13

    Article  CAS  PubMed  Google Scholar 

  70. Madiraju AK, Erion DM, Rahimi Y, Zhang XM, Braddock DT, Albright RA, Prigaro BJ, Wood JL, Bhanot S, MacDonald MJ, Jurczak MJ, Camporez JP, Lee HY, Cline GW (2014) Samuel VT2, Kibbey RG8, Shulman GI9. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510(7506):542–546. https://doi.org/10.1038/nature13270. Epub 2014 May 21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Maisonneuve P, Lowenfels AB (2015) Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol 44(1):186–198. https://doi.org/10.1093/ije/dyu240. Epub 2014 Dec 14

    Article  PubMed  Google Scholar 

  72. Marshall S (2006) Role of insulin, adipocyte hormones, and nutrient-sensing pathways in regulating fuel metabolism and energy homeostasis: a nutritional perspective of diabetes, obesity, and cancer. Sci STKE 2006(346):re7

    PubMed  Google Scholar 

  73. Maurer T, Garrenton LS, Oh A, Pitts K, Anderson DJ, Skelton NJ, Fauber BP, Pan B, Malek S, Stokoe D, Ludlam MJ, Bowman KK, Wu J, Giannetti AM, Starovasnik MA, Mellman I, Jackson PK, Rudolph J, Wang W, Fang G (2012) Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA 109(14):5299–5304. https://doi.org/10.1073/pnas.1116510109. Epub 2012 Mar 19

    Article  PubMed  PubMed Central  Google Scholar 

  74. Michalski CW, Hackert T, Büchler MW (2017) Targeting metabolism in pancreatic cancer. Lancet Oncol 18(6):699–700. https://doi.org/10.1016/S1470-2045(17)30304-2. Epub 2017 May 8

    Article  CAS  PubMed  Google Scholar 

  75. Mochizuki T, Furuta S, Mitsushita J, Shang WH, Ito M, Yokoo Y, Yamaura M, Ishizone S, Nakayama J, Konagai A, Hirose K, Kiyosawa K, Kamata T (2006) Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells. Oncogene 25(26):3699–3707. Epub 2006 Mar 13

    CAS  PubMed  Google Scholar 

  76. Moreno-Sanchez R, Marín-Hernández A, Saavedra E, Pardo JP, Ralph SJ, Rodríguez-Enríquez S (2014) Who controls the ATP supply in cancer cells? Biochemistry lessons to understand cancer energy metabolism. Int J Biochem Cell Biol 50:10–23. https://doi.org/10.1016/j.biocel.2014.01.025. Epub 2014 Feb 7

    Article  CAS  PubMed  Google Scholar 

  77. Ni HM, Williams JA, Ding WX (2015) Mitochondrial dynamics and mitochondrial quality control. Redox Biol 4:6–13. https://doi.org/10.1016/j.redox.2014.11.006. Epub 2014 Nov 20

    Article  CAS  PubMed  Google Scholar 

  78. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Görgün CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140

    PubMed  PubMed Central  Google Scholar 

  79. Papke B, Murarka S, Vogel HA, Martín-Gago P, Kovacevic M, Truxius DC, Fansa EK, Ismail S, Zimmermann G, Heinelt K, Schultz-Fademrecht C, Al Saabi A, Baumann M, Nussbaumer P, Wittinghofer A, Waldmann H, Bastiaens P (2016) Identification of pyrazolopyridazinones as PDEδ inhibitors. Nat Commun 7:11360. https://doi.org/10.1038/ncomms11360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pardee TS, Lee K, Luddy J, Maturo C, Rodriguez R, Isom S, Miller LD, Stadelman KM, Levitan D, Hurd D, Ellis LR, Harrelson R, Manuel M, Dralle S, Lyerly S, Powell BL (2014) A phase I study of the first-in-class antimitochondrial metabolism agent, CPI-613, in patients with advanced hematologic malignancies. Clin Cancer Res 20(20):5255–5264. https://doi.org/10.1158/1078-0432.CCR-14-1019. Epub 2014 Aug 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Park MT, Kim MJ, Suh Y, Kim RK, Kim H, Lim EJ, Yoo KC, Lee GH, Kim YH, Hwang SG, Yi JM, Lee SJ (2014) Novel signaling axis for ROS generation during K-Ras-induced cellular transformation. Cell Death Differ 21(8):1185–1197. https://doi.org/10.1038/cdd.2014.34. Epub 2014 Mar 14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Parks SK, Chiche J, Pouysségur J (2013) Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer 13(9):611–623. https://doi.org/10.1038/nrc3579

    Article  CAS  PubMed  Google Scholar 

  83. Permert J, Larsson J, Westermark GT, Herrington MK, Christmanson L, Pour PM et al (1994) Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N Engl J Med 330:313–318. https://doi.org/10.1056/NEJM199402033300503

    Article  CAS  PubMed  Google Scholar 

  84. Pollak MN (2012) Investigating metformin for cancer prevention and treatment: the end of the beginning. Cancer Discov 2(9):778–790. https://doi.org/10.1158/2159-8290.CD-12-0263. Epub 2012 Aug 27

    Article  CAS  PubMed  Google Scholar 

  85. Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4(7):505–518

    CAS  PubMed  Google Scholar 

  86. Powell DR, Suwanichkul A, Cubbage ML, DePaolis LA, Snuggs MB, Lee PD (1991) Insulin inhibits transcription of the human gene for insulin-like growth factor-binding protein-1. J Biol Chem 266(28):18868–18876

    CAS  PubMed  Google Scholar 

  87. Provenzano PP, Cuevas C, Chang AE, Goel VK, Von Hoff DD, Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem 278(45):44645–44649. Epub 2003 Aug 28

    Google Scholar 

  88. Putney LK, Barber DL (2003) Na-H exchange-dependent increase in intracellular pH times G2/M entry and transition. J Biol Chem Nov 7;278(45):44645–9. Epub 2003 Aug 28

    CAS  PubMed  Google Scholar 

  89. Qu Y, Sun L, Yang Z, Han R (2011) Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. J Genet 90(1):125–128

    PubMed  Google Scholar 

  90. Racker E, Resnick RJ, Feldman R (1985) Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc Natl Acad Sci USA 82(11):3535–3538

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Rajeshkumar NV, Dutta P, Yabuuchi S, de Wilde RF, Martinez GV, Le A, Kamphorst JJ, Rabinowitz JD, Jain SK, Hidalgo M, Dang CV, Gillies RJ, Maitra A (2015) Therapeutic targeting of the Warburg effect in pancreatic cancer relies on an absence of p53 function. Cancer Res 75(16):3355–3364. https://doi.org/10.1158/0008-5472.CAN-15-0108. Epub 2015 Jun 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rozengurt E, Sinnett-Smith J, Kisfalvi K (2010) Crosstalk between insulin/insulin-like growth factor-1 receptors and G protein-coupled receptor signaling systems: a novel target for the antidiabetic drug metformin in pancreatic cancer. Clin Cancer Res 16(9):2505–2511. https://doi.org/10.1158/1078-0432.CCR-09-2229. Epub 2010 Apr 13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501. https://doi.org/10.1126/science.1157535. Epub 2008 May 22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Savai R, Pullamsetti SS, Banat GA, Weissmann N, Ghofrani HA, Grimminger F, Schermuly RT (2010) Targeting cancer with phosphodiesterase inhibitors. Expert Opin Investig Drugs 19(1):117–131. https://doi.org/10.1517/13543780903485642

    Article  CAS  PubMed  Google Scholar 

  95. Scheele C, Nielsen AR, Walden TB, Sewell DA, Fischer CP, Brogan RJ, Petrovic N, Larsson O, Tesch PA, Wennmalm K, Hutchinson DS, Cannon B, Wahlestedt C, Pedersen BK, Timmons JA (2007) Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration? FASEB J 21(13):3653–3665. Epub 2007 Jun 12

    CAS  PubMed  Google Scholar 

  96. Segal ED, Yasmeen A, Beauchamp MC, Rosenblatt J, Pollak M, Gotlieb WH (2011) Relevance of the OCT1 transporter to the antineoplastic effect of biguanides. Biochem Biophys Res Commun 414(4):694–699. https://doi.org/10.1016/j.bbrc.2011.09.134. Epub 2011 Oct 2

    Article  CAS  PubMed  Google Scholar 

  97. Shelton LM, Huysentruyt LC, Seyfried TN (2010) Glutamine targeting inhibits systemic metastasis in the VM-M3 murine tumor model. Int J Cancer 127(10):2478–2485. https://doi.org/10.1002/ijc.25431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Shima F, Yoshikawa Y, Ye M, Araki M, Matsumoto S, Liao J, Hu L, Sugimoto T, Ijiri Y, Takeda A, Nishiyama Y, Sato C, Muraoka S, Tamura A, Osoda T, Tsuda K, Miyakawa T, Fukunishi H, Shimada J, Kumasaka T, Yamamoto M, Kataoka T (2013) In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras-effector interaction. Proc Natl Acad Sci USA 110(20):8182–8187. https://doi.org/10.1073/pnas.1217730110. Epub 2013 Apr 29

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sinnett-Smith J, Kisfalvi K, Kui R, Rozengurt E (2013) Metformin inhibition of mTORC1 activation, DNA synthesis and proliferation in pancreatic cancer cells: dependence on glucose concentration and role of AMPK. Biochem Biophys Res Commun 430(1):352–357. https://doi.org/10.1016/j.bbrc.2012.11.010. Epub 2012 Nov 15

    Article  CAS  PubMed  Google Scholar 

  100. Smith GD, Egger M, Shipley MJ, Marmot MG (1992) Post-challenge glucose concentration, impaired glucose tolerance, diabetes, and cancer mortality in men. Am J Epidemiol 136(9):1110–1114

    CAS  PubMed  Google Scholar 

  101. Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, Perera RM, Ferrone CR, Mullarky E, Shyh-Chang N, Kang Y, Fleming JB, Bardeesy N, Asara JM, Haigis MC, DePinho RA, Cantley LC, Kimmelman AC (2013) Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature 496(7443):101–105. https://doi.org/10.1038/nature12040. Epub 2013 Mar 27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Sousa CM, Biancur DE, Wang X, Halbrook CJ, Sherman MH, Zhang L, Kremer D, Hwang RF, Witkiewicz AK, Ying H, Asara JM, Evans RM, Cantley LC, Lyssiotis CA, Kimmelman AC (2016) Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536(7617):479–483. https://doi.org/10.1038/nature19084. Epub 2016 Aug 10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Stolzenberg-Solomon RZ, Graubard BI, Chari S, Limburg P, Taylor PR, Virtamo J, Albanes D (2005) Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294(22):2872–2878

    CAS  PubMed  Google Scholar 

  104. Stolzenberg-Solomon RZ, Newton CC, Silverman DT, Pollak M, Nogueira LM, Weinstein SJ, Albanes D, Männistö S, Jacobs EJ (2015) Circulating leptin and risk of pancreatic Cancer: a pooled analysis from 3 cohorts. Am J Epidemiol 182(3):187–197. https://doi.org/10.1093/aje/kwv041. Epub 2015 Jun 17

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sun Q, Burke JP, Phan J, Burns MC, Olejniczak ET, Waterson AG, Lee T, Rossanese OW, Fesik SW (2012) Discovery of small molecules that bind to K-Ras and inhibit Sos-mediated activation. Angew Chem Int Ed Engl 51(25):6140–6143. https://doi.org/10.1002/anie.201201358. Epub 2012 May 8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Szabadkai G, Duchen MR (2009) Mitochondria mediated cell death in diabetes. Apoptosis 14(12):1405–1423. https://doi.org/10.1007/s10495-009-0363-5

    Article  CAS  PubMed  Google Scholar 

  107. Teoh ML, Sun W, Smith BJ, Oberley LW, Cullen JJ (2007) Modulation of reactive oxygen species in pancreatic cancer. Clin Cancer Res 13(24):7441–7450

    CAS  PubMed  Google Scholar 

  108. Vaquero EC, Edderkaoui M, Pandol SJ, Gukovsky I, Gukovskaya AS (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J Biol Chem 279(33):34643–34654. Epub 2004 May 23

    CAS  PubMed  Google Scholar 

  109. Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698. https://doi.org/10.1038/nrc3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang JB, Erickson JW, Fuji R, Ramachandran S, Gao P, Dinavahi R, Wilson KF, Ambrosio AL, Dias SM, Dang CV, Cerione RA (2010) Targeting mitochondrial glutaminase activity inhibits oncogenic transformation. Cancer Cell 18(3):207–219. https://doi.org/10.1016/j.ccr.2010.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang P, Song M, Zeng ZL, Zhu CF, Lu WH, Yang J, Ma MZ, Huang AM, Hu Y, Huang P (2015) Identification of NDUFAF1 in mediating K-Ras induced mitochondrial dysfunction by a proteomic screening approach. Oncotarget 6(6):3947–3962

    PubMed  PubMed Central  Google Scholar 

  112. Webb BA, Chimenti M, Jacobson MP, Barber DL (2011) Dysregulated pH: a perfect storm for cancer progression. Nat Rev Cancer 11(9):671–677. https://doi.org/10.1038/nrc3110

    Article  CAS  PubMed  Google Scholar 

  113. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS (2005) Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst 97(22):1688–1694

    CAS  PubMed  Google Scholar 

  114. Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M, Kalyanaraman B, Mutlu GM, Budinger GR, Chandel NS (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107(19):8788–8793. https://doi.org/10.1073/pnas.1003428107. Epub 2010 Apr 26

    Article  PubMed  PubMed Central  Google Scholar 

  115. Weydert C, Roling B, Liu J, Hinkhouse MM, Ritchie JM, Oberley LW, Cullen JJ (2003) Suppression of the malignant phenotype in human pancreatic cancer cells by the overexpression of manganese superoxide dismutase. Mol Cancer Ther 2(4):361–369

    CAS  PubMed  Google Scholar 

  116. Wu Y, Lu J, Antony S, Juhasz A, Liu H, Jiang G, Meitzler JL, Hollingshead M, Haines DC, Butcher D, Roy K, Doroshow JH (2013) Activation of TLR4 is required for the synergistic induction of dual oxidase 2 and dual oxidase A2 by IFN-γ and lipopolysaccharide in human pancreatic cancer cell lines. J Immunol 190(4):1859–1872. https://doi.org/10.4049/jimmunol.1201725. Epub 2013 Jan 7

    Article  CAS  PubMed  Google Scholar 

  117. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    CAS  PubMed  Google Scholar 

  118. Xiang Y, Stine ZE, Xia J, Lu Y, O’Connor RS, Altman BJ, Hsieh AL, Gouw AM, Thomas AG, Gao P, Sun L, Song L, Yan B, Slusher BS, Zhuo J, Ooi LL, Lee CG, Mancuso A, McCallion AS, Le A, Milone MC, Rayport S, Felsher DW, Dang CV (2015) Targeted inhibition of tumor-specific glutaminase diminishes cell-autonomous tumorigenesis. J Clin Invest 125(6):2293–2306. https://doi.org/10.1172/JCI75836. Epub 2015 Apr 27

    Article  PubMed  PubMed Central  Google Scholar 

  119. Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, Bause A, Li Y, Stommel JM, Dell’antonio G, Mautner J, Tonon G, Haigis M, Shirihai OS, Doglioni C, Bardeesy N, Kimmelman AC (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev 25(7):717–729. https://doi.org/10.1101/gad.2016111. Epub 2011 Mar 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yeo TP (2015) Demographics, epidemiology, and inheritance of pancreatic ductal adenocarcinoma. Semin Oncol 42(1):8–18. https://doi.org/10.1053/j.seminoncol.2014.12.002. Epub 2014 Dec 9

    Article  PubMed  Google Scholar 

  121. Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, Locasale JW, Son J, Zhang H, Coloff JL, Yan H, Wang W, Chen S, Viale A, Zheng H, Paik JH, Lim C, Guimaraes AR, Martin ES, Chang J, Hezel AF, Perry SR, Hu J, Gan B, Xiao Y, Asara JM, Weissleder R, Wang YA, Chin L, Cantley LC, DePinho RA (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149(3):656–670. https://doi.org/10.1016/j.cell.2012.01.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang CY, Baffy G, Perret P, Krauss S, Peroni O, Grujic D, Hagen T, Vidal-Puig AJ, Boss O, Kim YB, Zheng XX, Wheeler MB, Shulman GI, Chan CB, Lowell BB (2001) Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell 105(6):745–755

    CAS  PubMed  Google Scholar 

  123. Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY, Guan KL (2013) Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 23(4):464–476. https://doi.org/10.1016/j.ccr.2013.02.005. Epub 2013 Mar 21

    Article  CAS  PubMed  Google Scholar 

  124. Zyromski NJ, Mathur A, Pitt HA, Wade TE, Wang S, Nakshatri P, Swartz-Basile DA, Nakshatri H (2009) Obesity potentiates the growth and dissemination of pancreatic cancer. Surgery 146(2):258–263. https://doi.org/10.1016/j.surg.2009.02.024

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge funding from DST-SERB (File number CRG/2018/001028) and DBT (File number BT/PR10319/BRB/10/1267/2013) to Prof. Naresh Babu V Sepuri. Noble Kumar Talari would like to acknowledge CSIR (09/414(1192)/2019-EMR-1) for the Research Associate fellowship. Ushodaya Mattam would like to acknowledge DBT (BT/PR19439/BIC/101/431/2016) for the fellowship. The authors also thank their lab members for suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noble Kumar Talari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Talari, N.K., Mattam, U., Sepuri, N.B.V. (2019). Role of Mitochondria in Pancreatic Metabolism, Diabetes, and Cancer. In: Nagaraju, G., BM Reddy, A. (eds) Exploring Pancreatic Metabolism and Malignancy. Springer, Singapore. https://doi.org/10.1007/978-981-32-9393-9_5

Download citation

Publish with us

Policies and ethics