Advertisement

Transport Properties and Stability of Skyrmions in MnSi Thin Films

  • Tomoyuki YokouchiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Thin films of skyrmionic materials offer the stage of stable skyrmions in a wide temperature range below the magnetic transition temperature, which is important for applications to non-volatile memory devices. In this section, we investigate the stability of skyrmions in thin films by means of transport measurements. With the use of planar Hall effect (PHE), we have revealed the formation of the in-plane skyrmions in the MnSi epitaxial thin films, which can hardly be detected by the conventional detection methods such as Lorentz TEM and topological Hall effect. We also investigate the stability of quasi-two-dimensional skyrmion by mapping the magnitude of topological Hall resistivity.

Keywords

Stability of skyrmions Epitaxial thin films Topological Hall effect Planar Hall effect 

References

  1. 1.
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Nature 465:901ADSCrossRefGoogle Scholar
  2. 2.
    Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y (2011) Nat Mater 10:106ADSCrossRefGoogle Scholar
  3. 3.
    Tonomura A, Yu XZ, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park HS, Tokura Y (2012) Nano Lett 12:1673ADSCrossRefGoogle Scholar
  4. 4.
    Mühlbauer S, Binz B, Jonietz F, Pleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Science 323:915ADSCrossRefGoogle Scholar
  5. 5.
    Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C (2010) Phys Rev B 81:041203ADSCrossRefGoogle Scholar
  6. 6.
    Moskvin E, Grigoriev S, Dyadkin V, Eckerlebe H, Baenitz M, Schmidt M, Wilhelm H (2013) Phys Rev Lett 110:077207ADSCrossRefGoogle Scholar
  7. 7.
    Wilson MN, Karhu EA, Quigley AS, Rößler UK, Butenko AB, Bogdanov AN, Robertson MD, Monchesky TL (2012) Phys Rev B 86:144420ADSCrossRefGoogle Scholar
  8. 8.
    Li Y, Kanazawa N, Yu XZ, Tsukazaki A, Kawasaki M, Ichikawa M, Jin XF, Kagawa F, Tokura Y (2013) Phys Rev Lett 110:117202Google Scholar
  9. 9.
    Karhu E, Kahwaji S, Monchesky TL, Parsons C, Robertson MD, Maunders C (2010) Phys Rev B 82:184417ADSCrossRefGoogle Scholar
  10. 10.
    Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kikkawa A, Taguchi Y, Kawasaki M, Ichikawa M, Kagawa F, Tokura Y (2015) J Phys Soc Jpn 84:104708Google Scholar
  11. 11.
    Wilson MN, Karhu EA, Lake DP, Quigley AS, Meynell S, Bogdanov AN, Fritzsche H, Rößler UK, Monchesky TL (2013) Phys Rev B 88:214420ADSCrossRefGoogle Scholar
  12. 12.
    Yokouchi T, Kanazawa N, Tsukazaki A, Kozuka Y, Kawasaki M, Ichikawa M, Kagawa F, Tokura Y (2014) Phys Rev B 89:064416Google Scholar
  13. 13.
    Bauer A, Neubauer A, Franz C, Münzer W, Garst M, Pfleiderer C (2010) Phys Rev B 82:064404ADSCrossRefGoogle Scholar
  14. 14.
    Ziman JM (1964) Principle of the theory of solids. Cambridge University Press, Cambridge, EnglandzbMATHGoogle Scholar
  15. 15.
    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y (2011) Phys Rev Lett 106:156603ADSCrossRefGoogle Scholar
  16. 16.
    Lee M, Onose Y, Tokura Y, Ong NP (2007) Phys Rev B 75:172403Google Scholar
  17. 17.
    Grigoriev SV, Dyadkin VA, Moskvin EV, Lamago D, Wolf Th, Eckerlebe H, Maleyev SV (2009) Phys Rev B 79:144417ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.RIKEN Center for Emergent Matter Science (CEMS)WakoJapan

Personalised recommendations