Advertisement

Introduction

  • Tomoyuki YokouchiEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Chiral spin structures produce various unique responses. Among them, skyrmion, a vortex-like nanoscale chiral spin structure with finite topological charge, attracts intensive interests, because of emergent transport response due to its non-trivial topology and promising application to next-generation non-volatile memory. In this chapter, we introduce basic properties of skyrmions and other chiral spin structures in chiral magnets.

Keywords

Chiral spin structure Skyrmion Berry phase Nonreciprocal response B20-type MnSi 

References

  1. 1.
    Nagaosa N, Tokura Y (2013) Nat Nanotech 8:899ADSCrossRefGoogle Scholar
  2. 2.
    Fert A, Cros V (2013) J Sampaio Nat Nanotech 8:152Google Scholar
  3. 3.
    Bogdanov AN, Yablonskii DA (1989) Sov Phys JETP 68:101Google Scholar
  4. 4.
    Mühlbauer S, Binz B, Jonietz F, Pleiderer C, Rosch A, Neubauer A, Georgii R, Böni P (2009) Science 323:915ADSCrossRefGoogle Scholar
  5. 5.
    Yu XZ, Onose Y, Kanazawa N, Park JH, Han JH, Matsui Y, Nagaosa N, Tokura Y (2010) Nature 465:901ADSCrossRefGoogle Scholar
  6. 6.
    Okubo T, Chung S, Kawamura H (2012) Phys Rev Lett 108:017206ADSCrossRefGoogle Scholar
  7. 7.
    Leonov AO, Mostovoy M (2015) Nat Commun 6:8275ADSCrossRefGoogle Scholar
  8. 8.
    Hayami S, Lin S-Z, Batista CD (2016) Phys Rev B 93:184413Google Scholar
  9. 9.
    Takagi R, White JS, Hayami S, Arita R, Honecker D, Rønnow HM, Tokura Y, Seki S (2018) Sci Adv 4:eaau3402Google Scholar
  10. 10.
    Kurumaji T, Nakajima T, Hirschberger M, Kikkawa A, Yamasaki Y, Sagayama H, Nakao H, Taguchi Y, Arima T, Tokura Y (2018) arXiv:1805
  11. 11.
    Heinze S, von Bergmann K, Menzel M, Brede J, Kubetzka A, Wiesendanger R, Bihlmayer G, Blügel S (2011) Nat Phys 7:713–718CrossRefGoogle Scholar
  12. 12.
    Park HS, Yu XZ, Aizawa S, Tanigaki T, Akashi T, Takahashi Y, Matsuda T, Kanazawa N, Onose Y, Shindo D, Tonomura A, Tokura Y (2014) Nat Nanotechnol 9:337ADSCrossRefGoogle Scholar
  13. 13.
    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz PG, Böni P (2009) Phys Rev Lett 102:186602ADSCrossRefGoogle Scholar
  14. 14.
    Münzer W, Neubauer A, Adams T, Mühlbauer S, Franz C, Jonietz F, Georgii R, Böni P, Pedersen B, Schmidt M, Rosch A, Pfleiderer C (2010) Phys Rev B 81:041203ADSCrossRefGoogle Scholar
  15. 15.
    Seki S, Yu XZ, Ishiwata S, Tokura Y (2012) Science 336:198ADSCrossRefGoogle Scholar
  16. 16.
    Tokunaga Y, Yu XZ, White JS, Rønnow HM, Morikawa D, Taguchi Y, Tokura Y (2015) Nat Commun 6:7638ADSCrossRefGoogle Scholar
  17. 17.
    Yu XZ, Kanazawa N, Onose Y, Kimoto K, Zhang WZ, Ishiwata S, Matsui Y, Tokura Y (2011) Nat Mater 10:106ADSCrossRefGoogle Scholar
  18. 18.
    Nii Y, Nakajima T, Kikkawa A, Yamasaki Y, Ohishi K, Suzuki J, Taguchi Y, Arima T, Tokura Y, Iwasa Y (2015) Nat Commun 6:8539ADSCrossRefGoogle Scholar
  19. 19.
    Chacon A, Bauer A, Adams T, Rucker F, Brandl G, Georgii R, Garst M, Pfleiderer C (2015) Phys Rev Lett 115:267202ADSCrossRefGoogle Scholar
  20. 20.
    Wilson MN, Karhu EA, Quigley AS, Rößler UK, Butenko AB, Bogdanov AN, Robertson MD, Monchesky TL (2012) Phys Rev B 86:144420ADSCrossRefGoogle Scholar
  21. 21.
    Ritz R, Halder M, Franz C, Bauer A, Wagner M, Bamler R, Rosch A, Pfleiderer C (2013) Phys Rev B 87:134424ADSCrossRefGoogle Scholar
  22. 22.
    Oike H, Kikkawa A, Kanazawa N, Taguchi Y, Kawasaki M, Tokura Y, Kagawa F (2016) Nat Phys 12:62CrossRefGoogle Scholar
  23. 23.
    Karube K, White JS, Reynolds N, Gavilano JL, Oike H, Kikkawa A, Kagawa F, Tokunaga Y, Rønnow HM, Tokura Y, Taguchi Y (2016) Nat Mat 15:1237CrossRefGoogle Scholar
  24. 24.
    Nakajima T, Oike H, Kikkawa A, Gilbert EP, Booth N, Kakurai K, Taguchi Y, Tokura Y, Kagawa F, Arima T (2017) Sci Adv 3:1602562ADSCrossRefGoogle Scholar
  25. 25.
    Shirane G, Cowley R, Majkrzak C, Sokoloff JB, Pagonis B, Perry CH, Ishikawa Y (1983) Phys Rev B 28:6251ADSCrossRefGoogle Scholar
  26. 26.
    Grigoriev SV, Maleyev SV, Okorokov AI, Chetverikov YuO, Georgii R, Böni P, Lamago D, Eckerlebe H, Pranzas K (2005) Phys Rev B 72:134420ADSCrossRefGoogle Scholar
  27. 27.
    Pappas C, Lelièvre-Berna E, Falus P, Bentley PM, Moskvin E, Grigoriev S, Fouquet P, Farago B (2009) Phys Rev Lett 102:197202ADSCrossRefGoogle Scholar
  28. 28.
    Grigoriev SV, Maleyev SV, Moskvin EV, Dyadkin VA, Fouquet P, Eckerlebe H (2010) Phys Rev B 81:144413ADSCrossRefGoogle Scholar
  29. 29.
    Blume M (1963) Phys Rev 130:1670ADSCrossRefGoogle Scholar
  30. 30.
    Pfleiderer C, Reznik D, Pintschovius L, Löhneysen HV, Garst M, Rosch A (2004) Nature 427:227ADSCrossRefGoogle Scholar
  31. 31.
    Uemura YJ, Goko T, Gat-Malureanu IM, Carlo JP, Russo PL, Savici AT, Aczel A, MacDougall GJ, Rodriguez JA, Luke GM, Dunsiger SR, McCollam A, Arai J, Pfleiderer Ch, Böni P, Yoshimura K, Baggio-Saitovitch E, Fontes MB, Larrea J, Sushko YV, Sereni J (2007) Nat Phys 3:29CrossRefGoogle Scholar
  32. 32.
    Ritz R, Halder M, Wagner M, Franz C, Bauer A, Pfleiderer C (2013) Nature 497:231ADSCrossRefGoogle Scholar
  33. 33.
    Togawa Y, Koyama T, Takayanagi K, Mori S, Kousaka Y, Akimitsu J, Nishihara S, Inoue K, Ovchinnikov AS, Kishine J (2012) Phys Rev Lett 108:107202ADSCrossRefGoogle Scholar
  34. 34.
    Togawa Y, Kousaka Y, Inoue K, Kishine J (2016) J Phys Soc Jap 85:112001ADSCrossRefGoogle Scholar
  35. 35.
    Wilson MN, Karhu EA, Lake DP, Quigley AS, Meynell S, Bogdanov AN, Fritzsche H, Rößler UK, Monchesky TL (2013) Phys Rev B 88:214420ADSCrossRefGoogle Scholar
  36. 36.
    Kanazawa N, White JS, Rønnow HM, Dewhurst CD, Fujishiro Y, Tsukazaki A, Kozuka Y, Kawasaki M, Ichikawa M, Kagawa F, Tokura Y (2016) Phys Rev B 94:184432ADSCrossRefGoogle Scholar
  37. 37.
    Kanazawa N, Onose Y, Arima T, Okuyama D, Ohoyama K, Wakimoto S, Kakurai K, Ishiwata S, Tokura Y (2011) Phys Rev Lett 106:156603ADSCrossRefGoogle Scholar
  38. 38.
    Kanazawa N, Kim J-H, Inosov DS, White JS, Egetenmeyer N, Gavilano JL, Ishiwata S, Onose Y, Arima T, Keimer B, Tokura Y (2012) Phys Rev B 86:134425Google Scholar
  39. 39.
    Kanazawa N, Nii Y, Zhang X-X, Mishchenko AS, De Filippis G, Kagawa F, Iwasa Y, Nagaosa N, Tokura Y (2016) Nat Commun 7:11622ADSCrossRefGoogle Scholar
  40. 40.
    Jonietz F, Mühlbauer S, Pfleiderer C, Nuebauer A, Münzer W, Bauer A, Adams T, Georgii R, Böni P, Duine RA, Evershor K, Garst M, Rosch A (2010) Science 330:1648ADSCrossRefGoogle Scholar
  41. 41.
    Schulz T, Ritz R, Bauer A, Halder M, Wagner M, Franz C, Pfleiderer C, Everschor K, Garst M, Rosch A (2012) Nat Phys 8:301CrossRefGoogle Scholar
  42. 42.
    Yu XZ, Kanazawa N, Zhang WZ, Nagai T, Hara T, Kimoto K, Matsui Y, Onose Y, Tokura Y (2012) Nat Commun 3:988ADSCrossRefGoogle Scholar
  43. 43.
    Yamaguchi A, Ono T, Nasu S, Miyake K, Mibu K, Shinjo T (2004) Phys Rev Lett 92:077205ADSCrossRefGoogle Scholar
  44. 44.
    Hayashi M, Thomas L, Moriya R, Rettner C, Parkin SSP (2008) Science 320:209ADSCrossRefGoogle Scholar
  45. 45.
    Thiele AA (1972) Phys Rev Lett 30:230ADSCrossRefGoogle Scholar
  46. 46.
    Everschor K, Garst M, Duine RA, Rosch A (2011) Phys Rev B 84:064401ADSCrossRefGoogle Scholar
  47. 47.
    Iwasaki J, Mochizuki M, Nagaosa N (2013) Nat Commun 4:1463Google Scholar
  48. 48.
    Iwasaki J, Mochizuki M, Nagaosa N (2013) Nat Nanotech 8:742ADSCrossRefGoogle Scholar
  49. 49.
    Jiang W, Zhang X, Yu G, Zhang W, Wang X, Jungfleisch MB, Pearson JE, Cheng X, Heinonen O, Wang KL, Zhou Y, Hoffmann A, te Velthuis SGE (2017) Nat Phys 13:162CrossRefGoogle Scholar
  50. 50.
    Ishikawa Y, Tajima K, Bloch D, Roth M (1976) Solid State Commun 19:525ADSCrossRefGoogle Scholar
  51. 51.
    Berry MV (1984) Proc R Soc Lond A 392:45ADSCrossRefGoogle Scholar
  52. 52.
    Xiao D, Chang M-C, Niu Q (2010) Rev Mod Phys 82:1959Google Scholar
  53. 53.
    Hall EH (1881) Phil Mg 12:157CrossRefGoogle Scholar
  54. 54.
    Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP (2010) Rev Mod Phys 82:1539ADSCrossRefGoogle Scholar
  55. 55.
    Onoda S, Sugimoto N, Nagaosa N (2008) Phys Rev B 77:165103ADSCrossRefGoogle Scholar
  56. 56.
    Karplus R, Luttinger JM (1954) Phys Rev 95:1154ADSCrossRefGoogle Scholar
  57. 57.
    Jungwirth T, Niu Q, MacDonald AH (2002) Phys Rev Lett 88:207208Google Scholar
  58. 58.
    Onoda M, Nagaosa N (2002) J Phys Soc Jpn 71:19ADSCrossRefGoogle Scholar
  59. 59.
    Ohgushi K, Murakami S, Nagaosa N (2000) Phys Rev B 62:R6065ADSCrossRefGoogle Scholar
  60. 60.
    Ye J, Kim YB, Millis AJ, Shraiman BI, Majumdar P, Tesanovic Z (1999) Phys Rev Lett 83:3737ADSCrossRefGoogle Scholar
  61. 61.
    Onoda M, Tatara G, Nagaosa N (2004) J Phys Soc Jpn 73:2624ADSCrossRefGoogle Scholar
  62. 62.
    Bruno P, Dugaev VK, Taillefumier M (2004) Phys Rev Lett 93:096806Google Scholar
  63. 63.
    Franz C, Freimuth F, Bauer A, Ritz R, Schnarr C, Duvinage C, Adams T, Blügel S, Rosch A, Mokrousov Y, Pfleiderer C (2014) Phys Rev Lett 112:186601Google Scholar
  64. 64.
    Rikken GLJA, Raupach E (1997) Nature 390:493ADSCrossRefGoogle Scholar
  65. 65.
    Tokura Y, Nagaosa N (2018) Nat Commun 9:3740ADSCrossRefGoogle Scholar
  66. 66.
    Rikken GLJA, Fölling J, Wyder P (2001) Phys Rev Lett 87:236602ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.RIKEN Center for Emergent Matter Science (CEMS)WakoJapan

Personalised recommendations