Advertisement

Phase Relationship Between ULF Waves and Drift-Bounce Resonant Particles

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The charged particles trapped in the Earth’s magnetosphere have three kinds of motions including gyration around the field line, bounce motion along the field line, and drift motion across the field line. Each kind of motion corresponds to one adiabatic invariant. When particles drift in the same speed as the poloidal-mode ULF waves in the azimuthal direction, they will experience constant accelerating/decelerating electric field, and continuously gain/lose energies.

References

  1. 1.
    Allan W (1983) Quarter-wave ULF pulsations. Planet Space Sci 31(3):323–330ADSCrossRefGoogle Scholar
  2. 2.
    Balogh A et al (1997) The cluster magnetic field investigation. Space Sci Rev 79:65–91ADSCrossRefGoogle Scholar
  3. 3.
    Chisham G, Orr D (1997) A statistical study of the local time asymmetry of Pc 5 ULF wave characteristics observed at midlatitudes by SAMNET. J Geophys Res 102(A11):24339–24350ADSCrossRefGoogle Scholar
  4. 4.
    Cummings W, O’sullivan R, Coleman P, (1969) Standing Alfvén waves in the magnetosphere. J Geophys Res 74(3):778–793.  https://doi.org/10.1029/JA074i003p00778ADSCrossRefGoogle Scholar
  5. 5.
    Dai L et al (2013) Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys Res Lett 40(16):4127–4132.  https://doi.org/10.1002/grl.50800ADSCrossRefGoogle Scholar
  6. 6.
    Dai L et al (2015) Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: A Van Allen Probes statistical study. J Geophys Res 120(6):4748–4762.  https://doi.org/10.1002/2015JA021134CrossRefGoogle Scholar
  7. 7.
    Fujita S, Tanaka T, Motoba T (2011) Long-period ULF waves driven by periodic solar wind disturbances. In: The dynamic magnetosphere. Springer, Berlin, pp 39–45CrossRefGoogle Scholar
  8. 8.
    Gustafsson G et al (2001) First results of electric field and density observations by Cluster EFW based on initial months of operation. Ann Geophys 19(10/12):1219–1240ADSCrossRefGoogle Scholar
  9. 9.
    Hao Y et al (2014) Interactions of energetic electrons with ULF waves triggered by interplanetary shock: Van Allen Probes observations in the magnetotail. J Geophys Res 119(10):8262–8273.  https://doi.org/10.1002/2014JA020023CrossRefGoogle Scholar
  10. 10.
    Hughes W, Southwood D, Mauk B, McPherron R, Barfield J (1978) Alfvén waves generated by an inverted plasma energy distribution. Nature 275(5675):43–45.  https://doi.org/10.1038/275043a0ADSCrossRefGoogle Scholar
  11. 11.
    Liu W, Sarris T, Li X, Ergun R, Angelopoulos V, Bonnell J, Glassmeier K (2010) Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere. J Geophys Res 115(A12).  https://doi.org/10.1029/2010JA015299Google Scholar
  12. 12.
    Mager PN, Klimushkin DY, Pilipenko VA, Schäfer S (2009) Field-aligned structure of poloidal Alfvn waves in a finite pressure plasma. Ann Geophys 27(10):3875–3882.  https://doi.org/10.5194/angeo-27-3875-2009ADSCrossRefGoogle Scholar
  13. 13.
    Mann IR et al (2013) Discovery of the action of a geophysical synchrotron in the Earths Van Allen radiation belts. Nat Commun 4:  https://doi.org/10.1038/ncomms3795
  14. 14.
    Mathie R, Mann I (2000) A correlation between extended intervals of ULF wave power and storm-time geosynchronous relativistic electron flux enhancements. Geophys Res Lett 27(20):3261–3264.  https://doi.org/10.1029/2000GL003822ADSCrossRefGoogle Scholar
  15. 15.
    McPherron R (2005) Magnetic pulsations: their sources and relation to solar wind and geomagnetic activity. Surv Geophys 26(5):545–592.  https://doi.org/10.1007/s10712-005-1758-7ADSCrossRefGoogle Scholar
  16. 16.
    Moullard O, Masson A, Laakso H, Parrot M, Décréau P, Santolik O, Andre M (2002) Density modulated whistler mode emissions observed near the plasmapause. Geophys Res Lett 29(20)ADSCrossRefGoogle Scholar
  17. 17.
    Northrop TG (1963) Adiabatic charged-particle motion. Rev Geophys 1(3):283–304ADSCrossRefGoogle Scholar
  18. 18.
    Ozeke L, Mann I (2004) Modeling the properties of guided poloidal Alfvén waves with finite asymmetric ionospheric conductivities in a dipole field. J Geophys Res 109(A5).  https://doi.org/10.1029/2003JA010151
  19. 19.
    Rème H et al (2001) First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann Geophys 19:1303–1354ADSCrossRefGoogle Scholar
  20. 20.
    Ren J et al (2017) Low-energy (\(<\)200 eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation. J Geophys Res 122(10):9969–9982.  https://doi.org/10.1002/2017JA024316ADSGoogle Scholar
  21. 21.
    Ren J, Zong QG, Wang YF, Zhou XZ (2015) The interaction between ULF waves and thermal plasma ions at the plasmaspheric boundary layer during substorm activity. J Geophys Res 120(2):1133–1143.  https://doi.org/10.1002/2014JA020766CrossRefGoogle Scholar
  22. 22.
    Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF (2016) Interaction of ULF waves with different ion species: pitch angle and phase space density implications. J Geophys Res 121(10):9459–9472.  https://doi.org/10.1002/2016JA022995CrossRefGoogle Scholar
  23. 23.
    Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF, Gu SJ, Zhu YF (2017) Phase relationship between ULF waves and drift-bounce resonant ions: a statistical study. J Geophys Res 122(7):7087–7096.  https://doi.org/10.1002/2016JA023848CrossRefGoogle Scholar
  24. 24.
    Ren J, Zong Q, Zhu Y, Zhou X, Gu S (2019) Field-aligned structures of the poloidal-mode ULF wave electric field: phase relationship implications. J Geophys Res 124(5):3410–3420.  https://doi.org/10.1029/2019JA026653CrossRefGoogle Scholar
  25. 25.
    Rubtsov A, Agapitov O, Mager P, Klimushkin DY, Mager O, Mozer F, Angelopoulos V (2018) Drift resonance of compressional ULF waves and substorm-injected protons from multipoint THEMIS measurements. J Geophys Res 123(11):9406–9419.  https://doi.org/10.1029/2018JA025985CrossRefGoogle Scholar
  26. 26.
    Singer HJ, Hughes WJ, Russell CT (1982) Standing hydromagnetic waves observed by ISEE 1 and 2: radial extent and harmonic. J Geophys Res 87:3519–3529.  https://doi.org/10.1029/JA087iA05p03519ADSCrossRefGoogle Scholar
  27. 27.
    Southwood D, Hughes W (1983) Theory of hydromagnetic waves in the magnetosphere. Space Sci Rev 35(4):301–366ADSCrossRefGoogle Scholar
  28. 28.
    Southwood DJ, Kivelson MG (1981) Charged particle behavior in low-frequency geomagnetic pulsations. I transverse waves. J Geophys Res 86:5643–5655.  https://doi.org/10.1029/JA086iA07p05643ADSCrossRefGoogle Scholar
  29. 29.
    Southwood DJ, Kivelson MG (1982) Charged particle behavior in low-frequency geomagnetic pulsations. II-graphical approach. J Geophys Res 87:1707–1710ADSCrossRefGoogle Scholar
  30. 30.
    Takahashi K, McEntire R, Lui A, Potemra T (1990) Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation. J Geophys Res 95(A4):3717–3731.  https://doi.org/10.1029/JA095iA04p03717ADSCrossRefGoogle Scholar
  31. 31.
    Takahashi K, Oimatsu S, Nosé M, Min K, Claudepierre SG, Chan A, Wygant J, Kim H (2018) Van Allen Probes observations of second harmonic poloidal standing Alfvén waves. J Geophys Res 123(1):611–637.  https://doi.org/10.1002/2017JA024869CrossRefGoogle Scholar
  32. 32.
    Takahashi K, Glassmeier K-H, Angelopoulos V, Bonnell J, Nishimura Y, Singer HJ, Russell CT (2011) Multisatellite observations of a giant pulsation event. J Geophys Res 116(A11).  https://doi.org/10.1029/2011JA016955CrossRefGoogle Scholar
  33. 33.
    Wang C, Zong Q, Xiao F, Su Z, Wang Y, Yue C (2011) The relations between magnetospheric chorus and hiss inside and outside the plasmasphere boundary layer: cluster observation. J Geophys Res 116(A7)Google Scholar
  34. 34.
    Wei C, Dai L, Duan S, Wang C, Wang Y (2019) Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states. Earth Planet Phys 3:1–14. https://doi.org/10.26464/epp2019021
  35. 35.
    Yang B et al (2011) Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves. J Geophys Res 116:A03207.  https://doi.org/10.1029/2010JA016047ADSCrossRefGoogle Scholar
  36. 36.
    Yang B, Zong Q-G, Fu SY, Li X, Korth A, Fu HS, Yue C, Reme H (2011) The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J Geophys Res 116.  https://doi.org/10.1029/2010JA015683CrossRefGoogle Scholar
  37. 37.
    Yang B, Zong Q-G, Wang Y, Fu S, Song P, Fu H, Korth A, Tian T, Reme H (2010) Cluster observations of simultaneous resonant interactions of ULF waves with energetic electrons and thermal ion species in the inner magnetosphere. J Geophys Res 115(A2).  https://doi.org/10.1029/2009JA014542CrossRefGoogle Scholar
  38. 38.
    Zhou X-Z, Wang Z-H, Zong Q-G, Rankin R, Kivelson MG, Chen X-R, Blake JB, Wygant JR, Kletzing CA (2016) Charged particle behavior in the growth and damping stages of ultralow frequency waves: theory and Van Allen Probes observations. J Geophys Res.  https://doi.org/10.1002/2016JA022447CrossRefGoogle Scholar
  39. 39.
    Zong Q-G et al (2007), Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett 34(12):105–+.  https://doi.org/10.1029/2007GL029915
  40. 40.
    Zong Q-G et al (2009) Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res 114(A10):204.  https://doi.org/10.1029/2009JA014,393CrossRefGoogle Scholar
  41. 41.
    Zong Q-G, Wang YF, Zhang H, Fu SY, Zhang H, Wang CR, Yuan CJ, Vogiatzis I (2012) Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J Geophys Res 117(A11):206.  https://doi.org/10.1029/2012JA018,024CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations