Interactions Between ULF Waves and Cold Plasmaspheric Particles

Part of the Springer Theses book series (Springer Theses)


In terms of particle energy and species, the inner magnetosphere can be divided into three regions including radiation belts, ring current, and plasmasphere, which are overlapped in space. In theory, radiation belt energetic electrons, ring current ions and cold plasmaspheric electrons can be accelerated by ULF waves via drift/drift-bounce resonance, which is shown in Fig. 3.1.


  1. 1.
    Adrian M, Gallagher D, Avanov L (2004) IMAGE EUV observation of radially bifurcated plasmaspheric features: first observations of a possible standing ULF waveform in the inner magnetosphere. J Geophys Res 109(A1).
  2. 2.
    Breneman A et al (2015) Global-scale coherence modulation of radiation-belt electron loss from plasmaspheric hiss. Nature 523(7559):193. Scholar
  3. 3.
    Carpenter DL, Lemaire J (2004) The plasmasphere boundary layer. Ann Geophys 22(12):4291–4298Google Scholar
  4. 4.
    Carpenter DL, Anderson R, Calvert W, Moldwin M (2000) CRRES observations of density cavities inside the plasmasphere. J Geophys Res 105(A10):23323–23338. Scholar
  5. 5.
    Chisham G (1996) Giant pulsations: an explanation for their rarity and occurrence during geomagnetically quiet times. J Geophys Res 101(A11):24–755. Scholar
  6. 6.
    Dai L et al (2013) Excitation of poloidal standing Alfvén waves through drift resonance wave-particle interaction. Geophys Res Lett 40(16):4127–4132. Scholar
  7. 7.
    Dai L et al (2015) Storm time occurrence and spatial distribution of Pc4 poloidal ULF waves in the inner magnetosphere: a Van Allen Probes statistical study. J Geophys Res 120(6):4748–4762. Scholar
  8. 8.
    Darrouzet F, de Keyser J, Pierrard V (2009) The Earth’s plasmasphere: a CLUSTER and IMAGE perspective. Springer Science & Business MediaGoogle Scholar
  9. 9.
    Degeling A, Rae I, Watt C, Shi Q, Rankin R, Zong Q-G (2018) Control of ULF wave accessibility to the inner magnetosphere by the convection of plasma density. J Geophys Res 123: Scholar
  10. 10.
    Foster J, Wygant J, Hudson M, Boyd A, Baker D, Erickson P, Spence HE (2015) Shock-induced prompt relativistic electron acceleration in the inner magnetosphere. J Geophys Res 120(3):1661–1674. Scholar
  11. 11.
    Fraser B, Nguyen T (2001) Is the plasmapause a preferred source region of electromagnetic ion cyclotron waves in the magnetosphere? J Atmos Terr Phys 63(11):1225–1247. Scholar
  12. 12.
    Hao Y et al (2017) Relativistic electron dynamics produced by azimuthally localized poloidal mode ULF waves: boomerang-shaped pitch angle evolutions. Geophys Res Lett 44(15):7618–7627ADSCrossRefGoogle Scholar
  13. 13.
    Horwitz J, Comfort R, Chappell C (1984) Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophys Res Lett 11(8):701–704. Scholar
  14. 14.
    Lee D-H (1996) Dynamics of MHD wave propagation in the low-latitude magnetosphere. J Geophys Res 101(A7):15371–15386ADSCrossRefGoogle Scholar
  15. 15.
    Li W et al (2009) Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophys Res Lett 36(9).
  16. 16.
    Li X, Hudson M, Chan A, Roth I (1993) Loss of ring current O+ ions due to interaction with Pc 5 waves. J Geophys Res 98(A1):215–231. Scholar
  17. 17.
    Liu W et al (2013) Poloidal ULF wave observed in the plasmasphere boundary layer. J Geophys Res 118(7):4298–4307. Scholar
  18. 18.
    Malaspina DM, Jaynes AN, Boulé C, Bortnik J, Thaller SA, Ergun RE, Kletzing CA, Wygant JR (2016) The distribution of plasmaspheric hiss wave power with respect to plasmapause location. Geophys Res Lett 43(15):7878–7886. Scholar
  19. 19.
    Mann IR et al (2013) Discovery of the action of a geophysical synchrotron in the Earths Van Allen radiation belts. Nat Commun 4:
  20. 20.
    Moldwin MB, Downward L, Rassoul H, Amin R, Anderson R (2002) A new model of the location of the plasmapause: CRRES results. J Geophys Res 107(A11):Google Scholar
  21. 21.
    Pokhotelov D, Rae I, Murphy K, Mann I (2016) Effects of ULF wave power on relativistic radiation belt electrons: 8–9 October 2012 geomagnetic storm. J Geophys Res 121:11766–11779. Scholar
  22. 22.
    Ren J et al (2017) Low-energy (\(<200\) eV) electron acceleration by ULF waves in the plasmaspheric boundary layer: Van Allen Probes observation. J Geophys Res 122(10):9969–9982. Scholar
  23. 23.
    Ren J, Zong QG, Wang YF, Zhou XZ (2015) The interaction between ULF waves and thermal plasma ions at the plasmaspheric boundary layer during substorm activity. J Geophys Res 120(2):1133–1143. Scholar
  24. 24.
    Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF (2016) Interaction of ULF waves with different ion species: pitch angle and phase space density implications. J Geophys Res 121(10):9459–9472. Scholar
  25. 25.
    Ren J, Zong QG, Zhou XZ, Rankin R, Wang YF, Gu SJ, Zhu YF (2017) Phase relationship between ULF waves and drift-bounce resonant ions: a statistical study. J Geophys Res 122(7):7087–7096. Scholar
  26. 26.
    Ren J, Zong Q, Miyoshi Y, Rankin R, Spence H, Funsten H, Wygant J, Kletzing CA (2018) A comparative study of ULF waves’ role in the dynamics of charged particles in the plasmasphere: Van Allen Probes observation. J Geophys Res 123(7):5334–5343. Scholar
  27. 27.
    Takahashi K, McEntire R, Lui A, Potemra T (1990) Ion flux oscillations associated with a radially polarized transverse Pc 5 magnetic pulsation. J Geophys Res 95(A4):3717–3731. Scholar
  28. 28.
    Walsh B, Foster J, Erickson P, Sibeck D (2014) Simultaneous ground-and space-based observations of the plasmaspheric plume and reconnection. Science 343(6175):1122–1125ADSCrossRefGoogle Scholar
  29. 29.
    Walsh B, Phan T, Sibeck D, Souza V (2014) The plasmaspheric plume and magnetopause reconnection. Geophys Res Lett 41(2):223–228. Scholar
  30. 30.
    Yang B et al (2011) Pitch angle evolutions of oxygen ions driven by storm time ULF poloidal standing waves. J Geophys Res 116:A03207. Scholar
  31. 31.
    Yang B, Zong Q-G, Fu SY, Li X, Korth A, Fu HS, Yue C, Reme H (2011) The role of ULF waves interacting with oxygen ions at the outer ring current during storm times. J Geophys Res 116: Scholar
  32. 32.
    Yue C et al (2016) Rapid enhancement of low-energy (\(<\)100 eV) ion flux in response to interplanetary shocks based on two Van Allen Probes case studies: Implications for source regions and heating mechanisms. J Geophys Res 121(7):6430–6443. Scholar
  33. 33.
    Zhu X, Kivelson MG (1989) Global mode ULF pulsations in a magnetosphere with a nonmonotonic Alfvén velocity profile. J Geophys Res 94(A2):1479–1485ADSCrossRefGoogle Scholar
  34. 34.
    Zong Q-G et al (2007) Ultralow frequency modulation of energetic particles in the dayside magnetosphere. Geophys Res Lett 34(12):105–+.
  35. 35.
    Zong Q-G et al (2009) Energetic electrons response to ULF waves induced by interplanetary shocks in the outer radiation belt. J Geophys Res 114(A10):204.,393CrossRefGoogle Scholar
  36. 36.
    Zong Q-G, Wang YF, Zhang H, Fu SY, Zhang H, Wang CR, Yuan CJ, Vogiatzis I (2012) Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves. J Geophys Res 117(A11):206.,024CrossRefGoogle Scholar
  37. 37.
    Zong Q, Rankin R, Zhou X (2017) The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earths magnetosphere. Rev Mod Plasma Phys 1(1):10ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Earth and Space SciencesPeking UniversityBeijingChina

Personalised recommendations