Use of Bio-Based Nanoparticles in Agriculture

  • Ashish Khandelwal
  • Ritika Joshi
  • Poulomi Mukherjee
  • S. D. Singh
  • Manoj Shrivastava


The use of bio-based nanoparticles is getting importance due to their ecofriendly and economic nature. Bio-based nanoparticles mainly synthesized from bottom-up approach and mother protein, secondary metabolite, extract, etc. act as stabilizing and capping agent. It helps to synthesize more stable and uniform nanoparticles as compared to chemical methods. High catalytic activity, more surface area, ion exchange capacity, fluorescence activity, and presence in different dimension such as metals, ceramics, and magnetic form allowed use of nanoparticles and their formulation in the field of agriculture such as soil nutrients, crop protectants, environment cleanup, contaminant detection, and reduction of post-harvest losses. Further, nano formulation approaches for controlled delivery of pesticides, nutrients, genetic materials, and growth stimulator can act as an another boon in the agriculture sector.


Bottom-up approach Stabilizing and capping agents Soil nutrient Crop protectants Environment cleanup Post-harvest losses 


  1. Ahamed M, Khan M, Siddiqui M, AlSalhi MS, Alrokayan SA (2011) Green synthesis, characterization and evaluation of biocompatibility of silver nanoparticles. Phys E Low Dimens Syst Nanostruct 43:1266–1271CrossRefGoogle Scholar
  2. Alsammarraie FK, Wang W, Zhou P, Mustapha A, Lina M (2018) Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids Surf B Biointerfaces 171:398–405PubMedCrossRefGoogle Scholar
  3. Aytar P, Şam M, Çabuk A (2008) Microbial desulphurization of Turkish lignites. Energy Fuel 22:1196–1199CrossRefGoogle Scholar
  4. Chandra JH, Raj LFAA, Namasivayam SKR, Bharani RSA (2013) Improved pesticidal activity of fungal metabolite from nomureae rileyi with chitosan nanoparticles. In Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, Chennai, pp 387–390Google Scholar
  5. Chandrashekharaiah M, Kandakoor SB, Gowda GB, Kammar V, Chakravarthy AK (2015) Nanomaterials: a review of their action and application in pest management and evaluation of DNA-tagged particles. In Chakravarthy AK (ed) New horizons in insect science: towards sustainable pest management. Springer, India, ISBN-13: 978-81-322-2089-3, pp 113–126Google Scholar
  6. Chen G, Yi B, Zeng G, Niu Q, Yan M, Chen A, Du J, Huang J, Zhang Q (2014) Facile green extracellular biosynthesis of CdS quantum dots by white rot fungus Phanerochaete chrysosporium. Colloids Surf B Biointerfaces 117:199–205PubMedCrossRefGoogle Scholar
  7. Chinnaperumal K, Govindasamy B, Paramasivam D, Dilipkumar A, Dhayalan A, Vadivel A, Sengodan K, Pachiappan P (2018) Bio-pesticidal effects of Trichoderma viride formulated titanium dioxide nanoparticle and their physiological and biochemical changes on Helicoverpa armigera (Hub.). Pest Biochem Physiol 149:26–36CrossRefGoogle Scholar
  8. Cihangir N, Saglam N (1999) Removal of cadmium by Pleurotus sajor-caju basidiomycetes. Acta Biotechnol 19:171–177CrossRefGoogle Scholar
  9. Cuevas R, Durán N, Diez MC, Tortella G, Rubilar O (2015) Extracellular biosynthesis of copper and copper oxide nanoparticles by Stereum hirsutum, a native white rot fungus from Chilean forests. J Nanomater. Scholar
  10. Das K, Thiagarajan P (2012) Mycobiosynthesis of metal nanoparticles. Int J Nanotech Nanosci 1:1–10CrossRefGoogle Scholar
  11. Dauthal P, Mukhopadhyay M (2012) Prunus domestica fruit extract-mediated synthesis of gold nanoparticles and its catalytic activity for 4-nitrophenol reduction. Ind Eng Chem Res 51(40):13014–13020CrossRefGoogle Scholar
  12. El-Batal AI, El Kenawy NM, Yassin AS, Amin MA (2015) Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnol Rep 5:31–39CrossRefGoogle Scholar
  13. Faramarzia MA, Forootanfara H (2011) Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf B Biointerfaces 87(1):23–27CrossRefGoogle Scholar
  14. Fayaz AM, Balaji K, Kalaichelvan PT, Venkatesan R (2009) Biogenic synthesis of silver nano-particles and their synergistic effect with antibiotics: a study against Gram-positive and Gram-negative bacteria. Nanomedicine NBM 6:103–109CrossRefGoogle Scholar
  15. Gan N, Yang X, Xie D, Wu Y, Wen WA (2010) Disposable organophosphorus pesticides enzyme biosensor based on magnetic composite nanoparticles modified screen printed carbon electrode. Sensors 10:625–638PubMedCrossRefGoogle Scholar
  16. Gangula A, Podila R, Karanam L, Janardhana C, Rao AM (2011) Catalytic reduction of 4- nitrophenol using biogenic gold and silver nanoparticles derived from Breynia rhamnoides. Langmuir 27(24):15268–15274PubMedCrossRefGoogle Scholar
  17. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedCrossRefGoogle Scholar
  18. Hassan HS, Elkady MF, El-Sayed EM, Mahmoud IM (2018) Synthesis and characterization of zinc oxide nanoparticles using green and chemical synthesis techniques for phenol decontamination. Int J Nanoelectron Mater 11(2):179–194Google Scholar
  19. He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215PubMedCrossRefGoogle Scholar
  20. Hutchison JE (2008) Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology. ACS Nano 2:395–402PubMedCrossRefGoogle Scholar
  21. Kaushik A, Solanki PR, Ansarib AA, Malhotra BD, Ahmad S (2009) Iron oxide-chitosan hybrid nanobiocomposite based nucleic acid sensor for pyrethroid detection. Biochem J 46:132–140Google Scholar
  22. Kavitha K, Elaiyakumar R, Sampath A, Sivasankar R, Vinothini S, Bharathi M, Kavitha D (2018) Formulation and evaluation of antimicrobial gel embedded with plant derived silver nanoparticles. Pharmacol Pharm Rep 1(1):13–21Google Scholar
  23. Kozielski KL, Tzeng SY, Green JJ (2013) Bioengineered nanoparticles for siRNA delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 5(5):449–468PubMedPubMedCentralCrossRefGoogle Scholar
  24. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32PubMedPubMedCentralCrossRefGoogle Scholar
  25. Li X, Xu H, Chen ZS, Chen G (2011) Biosynthesis of nanoparticles by microorganisms and their applications. J Nanomater. Scholar
  26. Lisa M, Chouhan RS, Vinayaka AC, Manonmani HK, Thakur MS (2009) Gold nanoparticles based dipstick immuno-assay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron 25:224–227PubMedCrossRefGoogle Scholar
  27. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10:161–165Google Scholar
  28. Mittal AK, Chisti Y, Banerjee UC (2013) Synthesis of metallic nanoparticles using plant extracts. Biotechnol Adv 31:346–356PubMedCrossRefGoogle Scholar
  29. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:075103PubMedCrossRefGoogle Scholar
  30. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  31. Narayanan KB, Park HH (2014) Antifungal activity of silver nanoparticles synthesized using turnip leaf extract (Brassica rapa L.) against wood rotting pathogens. Eur J Plant Pathol 140:185–192CrossRefGoogle Scholar
  32. Narayanan KB, Sakthivel N (2011) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189(1):519–525PubMedCrossRefGoogle Scholar
  33. Noda Y, Asaka T, Fudouzi H, Hayakawa T (2018) Accumulation and interparticle connections of triangular Ag-coated Au nanoprisms by oil-coating method for surface-enhanced Raman scattering applications. Appl Surf Sci 435:687–698CrossRefGoogle Scholar
  34. Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146PubMedPubMedCentralCrossRefGoogle Scholar
  35. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional applications, vol 2. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  36. Patil SV, Borase HP, Patil CD, Salunke BK (2012) Biosynthesis of silver nanoparticles using latex from few euphorbian plants and their antimicrobial potential. Appl Biochem Biotechnol 167:776–790PubMedCrossRefGoogle Scholar
  37. Rathore I, Tarafdar JC (2015) Prospective of biosynthesized magnesium nanoparticles in foliar application of wheat plant. J Bionanosci 9:209–214CrossRefGoogle Scholar
  38. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504PubMedCrossRefGoogle Scholar
  39. Sanghi R, Verma P, Puri S (2011) Enzymatic formation of gold nanoparticles using Phanerochaete chrysosporium. Adv Chem Eng Sci 1:154–162CrossRefGoogle Scholar
  40. Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39Google Scholar
  41. Shaligram NS, Bule M, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943CrossRefGoogle Scholar
  42. Shi C, Zhu N, Cao Y, Wu P (2015) Biosynthesis of gold nanoparticles assisted by the intracellular protein extract of Pycnoporus sanguineus and its catalysis in degradation of 4-nitroaniline. Nanoscale Res Lett 10(147):1–8Google Scholar
  43. Siddiquee S, Rovina K, Yusof NA, Rodrigues KF, Suryani S (2014) Nanoparticle-enhanced electrochemical biosensor with DNA immobilization and hybridization of Trichoderma harzianum gene. Bio Sensing Res 2:16–22CrossRefGoogle Scholar
  44. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33(1):159–164PubMedCrossRefGoogle Scholar
  45. Sur UK, Ankamwar B, Karmakar S, Halder A, Dasa P (2018) Green synthesis of silver nanoparticles using the plant extract of Shikakai and Reetha. Mater Today Proc 5:2321–2329CrossRefGoogle Scholar
  46. Tarafdar JC, Rathore I (2016) Microbial synthesis of nanoparticles for use in agriculture ecosystem. In: Bagyaraj DJ, Jamaluddin (eds) Microbes for plant stress management. New India Publishing Agency, Delhi, pp 105–118Google Scholar
  47. Tarafdar JC, Raliya R, Rathore I (2012) Microbial synthesis of phosphorus nanoparticles from Tri-calcium phosphate using Aspergillus tubingensis TFR-5. J Bionanosci 6:84–89CrossRefGoogle Scholar
  48. Tarafdar J, Rathore I, Kaur R and Jain A (2018) Biosynthesis of nanonutrients for agricultural applications, In: Singh B, Katare OP, Souto EB (ed) Emerging trend in nanobiomedicine, nanoagroceuticals & nanophytochemicals, CRC Press, ISBN 9780815389774, pp 15–30Google Scholar
  49. Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262CrossRefGoogle Scholar
  50. Umer A, Naveed S, Ramzan N (2012) Selection of a suitable method for the synthesis of copper nanoparticles. Nano: Brief Rep Rev 7(5):1–18CrossRefGoogle Scholar
  51. Valodkar M, Nagar PS, Jadeja RN, Thounaojam MC, Devkar RV, Thakore S (2011) Euphorbiaceae latex induced green synthesis of non-cytotoxic metallic nanoparticle solutions: a rational approach to antimicrobial applications. Colloids Surf A Physicochem Eng Asp 384:337–344CrossRefGoogle Scholar
  52. Vandergheynst J, Scher H, Guo HY, Schultz D (2007) Water-in-oil emulsions that improve the storage and delivery of the biolarvacide Lagenidium giganteum. Biol Control 52:207–229Google Scholar
  53. Vetchinkina EP, Burov AM, Ageeva MV, Dykman LA, Nikitin VE (2013) Biological synthesis of gold nanoparticles by the xylotrophic basidiomycete Lentinula edodes. Appl Biochem Microbiol 49:406–411CrossRefGoogle Scholar
  54. Vinayaka AC, Basheer S, Thakur MS (2009) Bioconjugation of CdTe quantum dot for the detection of 2,4-dichlorophenoxyacetic acid by competitive fluoroimmunoassay based biosensor. Biosens Bioelectron 24(6):1615–1620PubMedCrossRefGoogle Scholar
  55. Waclawek S, Goncukova Z, Adach K, Fijalkowski M, Cernik M (2018) Gren synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions. Environ Sci Pollut Res 25:1–10CrossRefGoogle Scholar
  56. Yesilada O, Asma D, Cing S (2003) Decolorization of textile dyes by fungal pellets. Process Biochem 38:933–938CrossRefGoogle Scholar
  57. Zahir AA, Bagavan A, Kamaraj C, Elango G, Rahuman AA (2012) Efficacy of plant mediated synthesized silver nanoparticles against Sitophilus oryzae. J Biopest 5:95–102Google Scholar
  58. Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F (2011) Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo L. Molecules 16:6667–6676PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ashish Khandelwal
    • 1
  • Ritika Joshi
    • 1
    • 2
  • Poulomi Mukherjee
    • 2
    • 3
  • S. D. Singh
    • 1
  • Manoj Shrivastava
    • 1
  1. 1.Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of Soil SciencePunjab Agricultural UniversityLudhianaIndia
  3. 3.Bhabha Atomic Research CentreTrombayMumbaiIndia

Personalised recommendations