Advertisement

Biological Synthesis of Nanoparticles Using Bacteria

  • Sudip MukherjeeEmail author
  • Susheel Kumar Nethi
Chapter

Abstract

Inorganic nanoplatforms represent an attractive tool in different biomedical applications due to their multifunctional property and intrinsic molecular property which help in efficient diagnosis, imaging, continuous monitoring, and successful therapy. Recently, synthesis of inorganic nanoparticles (INPs) by bio-reduction using bacteria and other microorganisms has gained immense popularity due to several advantages over chemical synthesis methods including low cost, less use of toxic chemicals, biocompatibility, and easy to synthesize. In this present book chapter, we have provided a detailed overview of bacteria-mediated green synthesis of INPs, their characterization, and mechanism of synthesis. Finally, we have mentioned the current challenges for the bacteria-mediated synthesis of INPs and their future scopes in various biomedical applications.

Keywords

Inorganic nanoparticles (INPs) Biosynthesis Bacteria Green Synthesis Microorganism Nanotechnology 

References

  1. Abdeen M, Sabry S, Ghozlan H, El-Gendy AA, Carpenter EE (2016) Microbial-physical synthesis of Fe and Fe3O4 magnetic nanoparticles using aspergillus niger YESM1 and supercritical condition of ethanol. J Nanomater 2016:7CrossRefGoogle Scholar
  2. Bai H-J, Zhang Z-M, Gong J (2006) Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28:1135–1139PubMedCrossRefGoogle Scholar
  3. Bai HJ, Zhang ZM, Guo Y, Yang GE (2009) Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B: Biointerfaces 70:142–146PubMedCrossRefGoogle Scholar
  4. Balakrishnan S, Mukherjee S, Das S, Bhat FA, Raja Singh P, Patra CR, Arunakaran J (2017) Gold nanoparticles-conjugated quercetin induces apoptosis via inhibition of EGFR/PI3K/Akt-mediated pathway in breast cancer cell lines (MCF-7 and MDA-MB-231). Cell Biochem Funct 35:217–231PubMedCrossRefGoogle Scholar
  5. Balasubramanian P, Velmurugan M, Chen S-M, Hwa K-Y (2017) Optimized electrochemical synthesis of copper nanoparticles decorated reduced graphene oxide: application for enzymeless determination of glucose in human blood. J Electroanal Chem 807:128–136CrossRefGoogle Scholar
  6. Bao H, Lu Z, Cui X, Qiao Y, Guo J, Anderson JM, Li CM (2010) Extracellular microbial synthesis of biocompatible CdTe quantum dots. Acta Biomater 6:3534–3541PubMedCrossRefGoogle Scholar
  7. Barui AK, Nethi SK, Patra CR (2017) Investigation of the role of nitric oxide driven angiogenesis by zinc oxide nanoflowers. J Mater Chem B 5:3391–3403CrossRefGoogle Scholar
  8. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomedicine 10:975–999PubMedPubMedCentralCrossRefGoogle Scholar
  9. Castro L, Blazquez ML, Munoz JA, Gonzalez F, Ballester A (2013) Biological synthesis of metallic nanoparticles using algae. IET Nanobiotechnol 7:109–116PubMedCrossRefGoogle Scholar
  10. Chau JLH, Chen C-Y, Yang C-C (2017) Facile synthesis of bimetallic nanoparticles by femtosecond laser irradiation method. Arab J Chem 10:S1395–S1401CrossRefGoogle Scholar
  11. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346PubMedCrossRefGoogle Scholar
  12. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640PubMedCrossRefGoogle Scholar
  13. Divya K, Kurian LC, Vijayan S, Manakulam Shaikmoideen J (2016) Green synthesis of silver nanoparticles by Escherichia coli: analysis of antibacterial activity. J Water Environ Nanotechnol 1:63–74Google Scholar
  14. Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41:2256–2282PubMedCrossRefGoogle Scholar
  15. Elblbesy MAA, Madbouly AK, Hamdan TAA (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2:98–103Google Scholar
  16. Elsabahy M, Wooley KL (2012) Design of polymeric nanoparticles for biomedical delivery applications. Chem Soc Rev 41:2545–2561PubMedPubMedCentralCrossRefGoogle Scholar
  17. El-Sheekh MM, El-Kassas HY (2016) Algal production of nano-silver and gold: their antimicrobial and cytotoxic activities: a review. J Genet Eng Biotechnol 14:299–310PubMedPubMedCentralCrossRefGoogle Scholar
  18. Fang M, Peng CW, Pang DW, Li Y (2012) Quantum dots for cancer research: current status, remaining issues, and future perspectives. Cancer Biol Med 9:151–163PubMedPubMedCentralGoogle Scholar
  19. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382–386CrossRefGoogle Scholar
  20. He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987CrossRefGoogle Scholar
  21. Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR (1995) Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163:143–147PubMedCrossRefGoogle Scholar
  22. Huang K-C, Ehrman SH (2007) Synthesis of iron nanoparticles via chemical reduction with palladium ion seeds. Langmuir 23:1419–1426PubMedCrossRefGoogle Scholar
  23. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650CrossRefGoogle Scholar
  24. Iravani S (2014) Bacteria in nanoparticle synthesis: current status and future prospects. Int Sch Res Not 2014:18Google Scholar
  25. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Biomed Res Int 2013:5CrossRefGoogle Scholar
  26. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  27. Javaid A, Oloketuyi SF, Khan MM, Khan F (2018) Diversity of bacterial synthesis of silver nanoparticles. BioNanoScience 8:43–59CrossRefGoogle Scholar
  28. Jayaseelan C et al (2012) Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc 90:78–84PubMedCrossRefGoogle Scholar
  29. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429CrossRefGoogle Scholar
  30. Kalimuthu K, Suresh Babu R, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B: Biointerfaces 65:150–153PubMedCrossRefGoogle Scholar
  31. Kamel Madbouly A, Hamdan T (2014) Bio-synthesis of magnetite nanoparticles by bacteria. Am J Nano Res Appl 2:98–103Google Scholar
  32. Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19:15–20PubMedCrossRefGoogle Scholar
  33. Konishi Y et al (2007) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653PubMedCrossRefGoogle Scholar
  34. Korbekandi H, Iravani S, Abbasi S (2009) Production of nanoparticles using organisms. Crit Rev Biotechnol 29:279–306PubMedCrossRefGoogle Scholar
  35. Korbekandi H, Iravani S, Abbasi S (2012) Optimization of biological synthesis of silver nanoparticles using Lactobacillus casei subsp. casei. J Chem Technol Biotechnol 87:932–937CrossRefGoogle Scholar
  36. Korbekandi H, Ashari Z, Iravani S, Abbasi S (2013) Optimization of biological synthesis of silver nanoparticles using Fusarium oxysporum. Iran J Pharm Res 12:289–298PubMedPubMedCentralGoogle Scholar
  37. Krutyakov YA, Olenin AY, Kudrinskii AA, Dzhurik PS, Lisichkin GV (2008) Aggregative stability and polydispersity of silver nanoparticles prepared using two-phase aqueous organic systems. Nanotechnol Russ 3:303–310CrossRefGoogle Scholar
  38. Kumar CG, Poornachandra Y (2015) Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf B Biointerfaces 125:110–119PubMedCrossRefGoogle Scholar
  39. Kumar CG, Poornachandra Y, Chandrasekhar C (2015) Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway). Nanoscale 7:18738–18750PubMedCrossRefGoogle Scholar
  40. Labrenz M et al (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747PubMedCrossRefGoogle Scholar
  41. Latsuzbaia R, Negro E, Koper G (2015) Synthesis, stabilization and activation of Pt nanoparticles for PEMFC applications. Fuel Cells 15:628–638CrossRefGoogle Scholar
  42. Lengke MF, Fleet ME, Southam G (2007) Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir 23:2694–2699PubMedCrossRefGoogle Scholar
  43. Li J et al (2016) Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine 11:5931–5944PubMedPubMedCentralCrossRefGoogle Scholar
  44. Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44CrossRefGoogle Scholar
  45. Marin ML, McGilvray KL, Scaiano JC (2008) Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc 130:16572–16584PubMedCrossRefGoogle Scholar
  46. Matsunaga T, Takeyama H (1998) Biomagnetic nanoparticle formation and application. Supramol Sci 5:391–394CrossRefGoogle Scholar
  47. Mocan T et al (2017) Carbon nanotubes as anti-bacterial agents. Cell Mol Life Sci 74:3467–3479PubMedCrossRefGoogle Scholar
  48. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2:282–289PubMedPubMedCentralCrossRefGoogle Scholar
  49. Mukherjee S, Patra CR (2016) Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale 8:12444–12470PubMedCrossRefGoogle Scholar
  50. Mukherjee S, Patra CR (2017) Biologically synthesized metal nanoparticles: recent advancement and future perspectives in cancer theranostics. Future Sci OA 3:Fso203PubMedPubMedCentralCrossRefGoogle Scholar
  51. Mukherjee S et al (2014) Potential theranostics application of bio-synthesized silver nanoparticles (4-in-1 system). Theranostics 4:316–335PubMedPubMedCentralCrossRefGoogle Scholar
  52. Mukherjee S et al (2016) Green synthesis and characterization of monodispersed gold nanoparticles: toxicity study, delivery of doxorubicin and its bio-distribution in mouse model. J Biomed Nanotechnol 12:165–181PubMedCrossRefGoogle Scholar
  53. Mukherjee S, Nethi SK, Patra CR (2017) Green synthesized gold nanoparticles for future biomedical applications. In: Jana S, Jana S (eds) Particulate technology for delivery of therapeutics. Springer Singapore, Singapore, pp 359–393CrossRefGoogle Scholar
  54. Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW (1989) Bacterial sorption of heavy metals. Appl Environ Microbiol 55:3143–3149PubMedPubMedCentralGoogle Scholar
  55. Nethi SK, Mukherjee S, Veeriah V, Barui AK, Chatterjee S, Patra CR (2014) Bioconjugated gold nanoparticles accelerate the growth of new blood vessels through redox signaling. Chem Commun (Camb) 50:14367–14370CrossRefGoogle Scholar
  56. Nethi SK et al (2015) Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods. Nanoscale 7:9760–9770PubMedPubMedCentralCrossRefGoogle Scholar
  57. Nethi SK, Barui AK, Bollu VS, Rao BR, Patra CR (2017a) Pro-angiogenic properties of terbium hydroxide nanorods: molecular mechanisms and therapeutic applications in wound healing. ACS Biomater Sci Eng 3:3635–3645CrossRefGoogle Scholar
  58. Nethi SK, Nanda HS, Steele TWJ, Patra CR (2017b) Functionalized nanoceria exhibit improved angiogenic properties. J Mater Chem B 5:9371–9383CrossRefGoogle Scholar
  59. Nethi SK, Barui AK, Mukherjee S, Patra CR (2018) Engineered nanoparticles for effective redox signaling during angiogenic and antiangiogenic therapy. Antioxid Redox Signal 30(5):786–809CrossRefGoogle Scholar
  60. Oh E, Susumu K, Mäkinen AJ, Deschamps JR, Huston AL, Medintz IL (2013) Colloidal stability of gold nanoparticles coated with multithiol-poly(ethylene glycol) ligands: importance of structural constraints of the sulfur anchoring groups. J Phys Chem C 117:18947–18956CrossRefGoogle Scholar
  61. Oliveira MM, Ugarte D, Zanchet D, Zarbin AJ (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435PubMedCrossRefGoogle Scholar
  62. Ovais M et al (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102(16):6799–6814PubMedCrossRefGoogle Scholar
  63. Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5:233CrossRefGoogle Scholar
  64. Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8:331–336PubMedPubMedCentralCrossRefGoogle Scholar
  65. Patra CR et al (2014) Biosynthesized silver nanoparticles: a step forward for cancer theranostics? Nanomedicine 9(10):1445–1448PubMedCrossRefGoogle Scholar
  66. Patra S, Mukherjee S, Barui AK, Ganguly A, Sreedhar B, Patra CR (2015) Green synthesis, characterization of gold and silver nanoparticles and their potential application for cancer therapeutics. Mater Sci Eng C 53:298–309CrossRefGoogle Scholar
  67. Pérez-de-Mora A, Burgos P, Madejón E, Cabrera F, Jaeckel P, Schloter M (2006) Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biol Biochem 38:327–341CrossRefGoogle Scholar
  68. Plaza DO, Gallardo C, Straub YD, Bravo D, Pérez-Donoso JM (2016) Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories. Microb Cell Factories 15:76CrossRefGoogle Scholar
  69. Poojary MM, Passamonti P, Adhikari AV (2016) Green synthesis of silver and gold nanoparticles using root bark extract of Mammea suriga: characterization, process optimization, and their antibacterial activity. BioNanoScience 6:110–120CrossRefGoogle Scholar
  70. Pourali P, Badiee SH, Manafi S, Noorani T, Rezaei A, Yahyaei B (2017) Biosynthesis of gold nanoparticles by two bacterial and fungal strains, Bacillus cereus and Fusarium oxysporum, and assessment and comparison of their nanotoxicity in vitro by direct and indirect assays. Electron J Biotechnol 29:86–93CrossRefGoogle Scholar
  71. Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250PubMedCentralCrossRefPubMedGoogle Scholar
  72. Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811CrossRefGoogle Scholar
  73. Ramanathan R, Field MR, O'Mullane AP, Smooker PM, Bhargava SK, Bansal V (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306PubMedCrossRefGoogle Scholar
  74. Rizzo LY, Theek B, Storm G, Kiessling F, Lammers T (2013) Recent progress in nanomedicine: therapeutic, diagnostic and theranostic applications. Curr Opin Biotechnol 24:1159–1166PubMedCrossRefGoogle Scholar
  75. Saez V, Mason TJ (2009) Sonoelectrochemical synthesis of nanoparticles. Molecules (Basel, Switzerland) 14:4284–4299CrossRefGoogle Scholar
  76. Saifuddin N, Wong CW, Yasumira AAN (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6:61–70CrossRefGoogle Scholar
  77. Saravanan C, Rajesh R, Kaviarasan T, Muthukumar K, Kavitake D, Shetty PH (2017) Synthesis of silver nanoparticles using bacterial exopolysaccharide and its application for degradation of azo-dyes. Biotechnol Rep 15:33–40CrossRefGoogle Scholar
  78. Sarkar B, Netam SP, Mahanty A, Saha A, Bosu R, Krishnani KK (2014) Toxicity evaluation of chemically and plant derived silver nanoparticles on zebrafish (Danio rerio). Proc Nat Acad Sci India Sect B Biol Sci 84:885–892CrossRefGoogle Scholar
  79. Schluter M et al (2014) Synthesis of novel palladium(0) nanocatalysts by microorganisms from heavy-metal-influenced high-alpine sites for dehalogenation of polychlorinated dioxins. Chemosphere 117:462–470PubMedCrossRefGoogle Scholar
  80. Schmid G (1992) Large clusters and colloids. Metals in the embryonic state. Chem Rev 92:1709–1727CrossRefGoogle Scholar
  81. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles – a review. Acta Biomater 10:4023–4042PubMedCrossRefGoogle Scholar
  82. Sengupta J, Ghosh S, Datta P, Gomes A, Gomes A (2014) Physiologically important metal nanoparticles and their toxicity. J Nanosci Nanotechnol 14:990–1006PubMedCrossRefGoogle Scholar
  83. Shameli K, Ahmad MB, Zargar M, Yunus WMZW, Rustaiyan A, Ibrahim NA (2011) Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int J Nanomedicine 6:581–590PubMedPubMedCentralCrossRefGoogle Scholar
  84. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry 46:1800–1807CrossRefGoogle Scholar
  85. Singh PK, Kundu S (2014) Biosynthesis of gold nanoparticles using bacteria. Proc Nat Acad Sci India Sect B Biol Sci 84:331–336CrossRefGoogle Scholar
  86. Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99:4579–4593PubMedCrossRefGoogle Scholar
  87. Srivastava SK, Yamada R, Ogino C, Kondo A (2013) Biogenic synthesis and characterization of gold nanoparticles by Escherichia coli K12 and its heterogeneous catalysis in degradation of 4-nitrophenol. Nanoscale Res Lett 8:70PubMedPubMedCentralCrossRefGoogle Scholar
  88. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23PubMedCrossRefGoogle Scholar
  89. Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The Green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16PubMedCrossRefGoogle Scholar
  90. Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 17:835–840CrossRefGoogle Scholar
  91. Svenson S, Tomalia DA (2005) Dendrimers in biomedical applications–reflections on the field. Adv Drug Deliv Rev 57:2106–2129PubMedCrossRefGoogle Scholar
  92. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6:257–262PubMedCrossRefGoogle Scholar
  93. Torabian P, Ghandehari F, Fatemi M (2018) Biosynthesis of iron oxide nanoparticles by cytoplasmic extracts of bacteria lactobacillus casei. Asian J Green Chem 2:181–188Google Scholar
  94. Tripathi RM, Akhshay Singh B, Priti S, Archana S, Singh MP, Shrivastav BR (2014) Mechanistic aspects of biogenic synthesis of CdS nanoparticles using Bacillus licheniformis. Adv Nat Sci Nanosci Nanotechnol 5:025006CrossRefGoogle Scholar
  95. Veiseh O, Gunn JW, Zhang M (2010) Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv Drug Deliv Rev 62:284–304PubMedCrossRefGoogle Scholar
  96. Wang Y, Xia Y (2004) Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett 4:2047–2050CrossRefGoogle Scholar
  97. Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J (2009) Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11:279–288CrossRefGoogle Scholar
  98. Wiley B, Sun Y, Mayers B, Xia Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry 11:454–463PubMedCrossRefGoogle Scholar
  99. Yeary LW, Ji-Won M, Love LJ, Thompson JR, Rawn CJ, Phelps TJ (2005) Magnetic properties of biosynthesized magnetite nanoparticles. IEEE Trans Magn 41:4384–4389CrossRefGoogle Scholar
  100. Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601CrossRefGoogle Scholar
  101. Zhang D et al (2015) Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME J 9:603–614PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Bioengineering, George R. Brown School of EngineeringRice UniversityHoustonUSA
  2. 2.College of PharmacyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations