Nanotechnology for Polluted Soil Remediation

  • Tamer A. Salem
  • Nashwa A. Fetian
  • Nabil I. Elsheery


Nanotechnology had been attracted many scientists for its unique physical, chemical, and biological characteristics that differ from those in a large-scale model for the same material. Nanomaterials were developed for many applications in many fields such as medicine, drug delivery, electronics, fuel cells, solar cells, food, space, and etc. Among these applications, nanomaterials had proved many benefits for remediation of different soil pollutants. Nanomaterial can help in detection and treatment of soil pollutants in variety of ways. Nanomaterials precipitates soil pollutants, acts as solid waste stabilizer and controls soil erosion. The potential of nanotechnology in soil reclamation is huge, but a few issues only will be discussed in this chapter.


Nanotechnology Soil pollutant reclamation Solid waste stabilizers Soil erosion control Zeolites Iron oxide nanomaterials Zerovalent iron Carbon nanotube 


  1. Abdelouas A (2006) Uranium mill tailings: geochemistry, mineralogy, and environmental impact. Elements 2(6):335–341CrossRefGoogle Scholar
  2. Andry H, Yamamoto T, Inoue M (2009) Influence of artificial zeolite and hydrated lime amendments on the erodibility of an acidic soil. Commun Soil Sci Plant Anal 40(7–8):1053–1072CrossRefGoogle Scholar
  3. Ankley GT, Di Toro DM, Hansen DJ, Berry WJ (1996) Technical basis and proposal for deriving sediment quality criteria for metals. Environ Toxicol Chem 15(12):2056–2066CrossRefGoogle Scholar
  4. Auffan M, Decome L, Rose J, Orsiere T, De Meo M, Briois V, Chaneac C, Olivi L, JLB L, Botta A, Wiesner MR, Bottero JY (2006) In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study. Environ Sci Technol 40(14):4367–4373CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101CrossRefPubMedPubMedCentralGoogle Scholar
  6. Baalousha M, Manciulea A, Cumberland S, Kendall K, Lead JR (2008) Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environ Toxicol Chem 27(9):1875–1882CrossRefPubMedPubMedCentralGoogle Scholar
  7. Basta NT, McGowen SL (2004) Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollut 127(1):73–82CrossRefPubMedPubMedCentralGoogle Scholar
  8. Benoit JM, Gilmour CC, Mason RP, Heyes A (1999) Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environ Sci Technol 33(6):951–957CrossRefGoogle Scholar
  9. Bigham JM, Fitzpatrick RW, Schulze DG (2002) Iron oxides. In: Dixon JB, Schulze DG (eds) Soil mineralogy with environmental applications. Soil Science Society of America, Madison, pp 323–366Google Scholar
  10. Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369(1–3):307–332CrossRefPubMedPubMedCentralGoogle Scholar
  11. Butler EC, Hayes KF (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide. Environ Sci Technol 32(9):1276–1284CrossRefGoogle Scholar
  12. Butler EC, Hayes KF (1999) Kinetics of the transformation of trichloroethylene and tetrachloroethylene by iron sulfide. Environ Sci Technol 33(12):2021–2027CrossRefGoogle Scholar
  13. Butler EC, Hayes KF (2001) Factors influencing rates and products in the transformation of trichloroethylene by iron sulfide and iron metal. Environ Sci Technol 35(19):3884–3891CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cao B, Ahmed B, Beyenal H (2010) Immobilization of uranium in groundwater using biofilms. In: Shah V (ed) Emerging environmental technologies, vol 2. Springer, New York, pp 1–37Google Scholar
  15. Chlopecka A, Adriano DC (1996) Mimicked in-situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ Sci Technol 30(11):3294–3303CrossRefGoogle Scholar
  16. Coppola E, Battaglia G, Bucci M, Ceglie D, Colella A, Langella A, Buondonno A, Colella C (2003) Remediation of Cd- and Pb-polluted soil by treatment with organo-zeolite conditioner. Clay Clay Miner 51(6):609–615CrossRefGoogle Scholar
  17. Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45(9):2931–2942CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dickinson M, Scott TB (2010) The application of zero valent iron nanoparticles for the remediation of a uranium contaminated waste effluent. J Hazard Mater 178(1–3):171–179CrossRefPubMedPubMedCentralGoogle Scholar
  19. Drott A, Lambertsson L, Bjorn E, Skyllberg U (2007) Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments. Environ Sci Technol 41(7):2270–2276CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edwards R, Rebedea I, Lepp NW, Lovell AJ (1999) An investigation into the mechanism by which synthetic zeolites reduce labile metal concentrations in soils. Environ Geochem Health 21(2):157–173CrossRefGoogle Scholar
  21. Eighmy TT, Crannell BS, Butler LG, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilization in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 31(11):3330–3338CrossRefGoogle Scholar
  22. Fang G, Si Y, Tian C, Zhang G, Zhou D (2012) Degradation of 2,4-D in soils by Fe3O4 nanoparticles combined with stimulating indigenous microbes. Environ Sci Pollut Res 19:784–793CrossRefGoogle Scholar
  23. Fiedor JN, Bostick WD, Jarabek RJ, Farrell J (1998) Understanding the mechanism of uranium removal from groundwater by zero- valent iron using X-ray photoelectron spectroscopy. Environ Sci Technol 32(10):1466–1473CrossRefGoogle Scholar
  24. Franco DV, Da Silva LM, Jardim WF (2009) Reduction of hexavalent chromium in soil and ground water using zerovalent iron under batch and semi-batch conditions. Water Air Soil Pollut 197(1–4):49–60CrossRefGoogle Scholar
  25. Gadepalle VP, Ouki SK, Van Herwijnen R, Hutchings T (2007) Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam 16(2):233–251CrossRefGoogle Scholar
  26. Geebelen W, Vangronsveld J, Adriano DC, Carleer R, Clijsters H (2002) Amendment-induced immobilization of lead in a lead-spiked soil: evidence from phytotoxicity studies. Water Air Soil Pollut 140(1–4):261–277CrossRefGoogle Scholar
  27. Grace WR (2010) Co Enriching Lives, Everywhere. – Zeolite Structure Archived February 15, 2009, at the Wayback Machine. Retrieved on 2010-12-09
  28. Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183CrossRefPubMedPubMedCentralGoogle Scholar
  29. Haidouti C (1997) Inactivation of mercury in contaminated soils using natural zeolites. Sci Total Environ 208(1–2):105–109CrossRefPubMedPubMedCentralGoogle Scholar
  30. He F, Zhao D (2005) Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39(9):3314–3320CrossRefPubMedPubMedCentralGoogle Scholar
  31. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRefPubMedPubMedCentralGoogle Scholar
  32. He YT, Wan J, Tokunaga T (2008) Kinetic stability of hematite nanoparticles: the effect of particle sizes. J Nanopart Res 10(2):321–332CrossRefGoogle Scholar
  33. Hong Y, Honda RJ, Myung NV, Walker SL (2009) Transport of iron-based nanoparticles: role of magnetic properties. Environ Sci Technol 43(23):8834–8839CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408(16):3477–3489CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hua B, Deng B (2008) Reductive immobilization of uranium(VI) by amorphous iron sulfide. Environ Sci Technol 42(23):8703–8708CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hua M, Zhang S, Pan B, Zhang W, Li L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211–212:317–331CrossRefPubMedPubMedCentralGoogle Scholar
  37. Huang Y, Xi Y, Yang Y, Chen C, Yuan H, Liu X (2014) Degradation of 2,4-dichlorophenol catalyzed by the immobilized laccase with the carrier of Fe3O4@MSS–NH2. Chin Sci Bull 59(5–6):509–520CrossRefGoogle Scholar
  38. Hyung H, Fortner JD, Hughes J, Kim JH (2007) Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol 41(1):179–184CrossRefPubMedPubMedCentralGoogle Scholar
  39. Jaisi DP, Elimelech M (2009) Single-walled carbon nanotubes exhibit limited transport in soil columns. Environ Sci Technol 43(24):9161–9166CrossRefPubMedPubMedCentralGoogle Scholar
  40. Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42(22):8317–8323CrossRefPubMedPubMedCentralGoogle Scholar
  41. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environ Sci Technol 39(5):1378–1383CrossRefPubMedPubMedCentralGoogle Scholar
  42. Jiang L, Gao L, Sun J (2003) Production of aqueous colloidal dispersions of carbon nanotubes. J Colloid Interface Sci 260(1):89–94CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298CrossRefPubMedPubMedCentralGoogle Scholar
  45. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118CrossRefPubMedPubMedCentralGoogle Scholar
  46. Knox AS, Kaplan DI, Adriano DC, Hinton TG, Wilson MD (2003) Apatite and phillipsite as sequestering agents for metals and radionuclides. J Environ Qual 32(2):515–525CrossRefPubMedPubMedCentralGoogle Scholar
  47. Knox AS, Kaplan DI, Paller MH (2006) Phosphate sources and their suitability for remediation of contaminated soils. Sci Total Environ 357(1–3):271–279CrossRefPubMedPubMedCentralGoogle Scholar
  48. Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of as, Cr, cu, Pb and Zn in soil using amendments-a review. Waste Manag 28(1):215–225CrossRefPubMedPubMedCentralGoogle Scholar
  49. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77(1):126–134CrossRefPubMedPubMedCentralGoogle Scholar
  50. Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9(2):233–243CrossRefGoogle Scholar
  51. Li XQ, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22(10):4638–4642CrossRefPubMedPubMedCentralGoogle Scholar
  52. Li XQ, Zhang WX (2007) Sequestration of metal cations with zerovalent iron nanoparticles: a study with high resolution x-ray photoelectron spectroscopy (HR-XPS). J Phys Chem C 111(19):6939–6946CrossRefGoogle Scholar
  53. Li YH, Ding J, Luan Z, Di Z, Zhu Y, Xu C, Wu D, We B (2003) Competitive adsorption of Pb2+, Cu2+ and cd 2+ ions from aqueous solutions by multi walled carbon nanotubes. Carbon 41(14):2787–2792CrossRefGoogle Scholar
  54. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress,” Environ Sci Technol, vol. 41, no. 11, pp. 4158–4163, 2007Google Scholar
  55. Lin CF, Lo SS, Lin HY, Lee Y (1998) Stabilization of cadmium contaminated soils using synthesized zeolite. J Hazard Mater 60(3):217–226CrossRefGoogle Scholar
  56. Liu J, Valsaraj KT, Delaune RD (2009) Inhibition of mercury methylation by iron sulfides in an anoxic sediment. Environ Eng Sci 26(4):833–840CrossRefGoogle Scholar
  57. Liu R (2011) In-situ lead remediation in a shoot-range soil using stabilized apatite nanoparticles. In: Proceedings of the 85th ACS colloid and surface science symposium. McGill University, MontrealGoogle Scholar
  58. Liu R, Zhao D (2007) Reducing leachability and bioaccessibility of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res 41(12):2491–2502CrossRefPubMedPubMedCentralGoogle Scholar
  59. Liu S, Yuan L, Yue X, Zheng Z, Tang Z (2008) Recent advances in nanosensors for organophosphate pesticide detection. Adv Powder Technol 19:419–441CrossRefGoogle Scholar
  60. Lu C, Liu C (2006) Removal of nickel (II) from aqueous solution by carbon nanotubes. J Chem Technol Biotechnol 81(12):1932–1940CrossRefGoogle Scholar
  61. Ma QY, Logan TJ, Traina SJ (1995) Lead immobilization from aqueous solutions and contaminated soils using phosphate rocks. Environ Sci Technol 29(4):1118–1126CrossRefPubMedPubMedCentralGoogle Scholar
  62. Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L (2006) Cellular toxicity of carbon-based nanomaterials. Nano Lett 6(6):1121–1125CrossRefPubMedPubMedCentralGoogle Scholar
  63. Mahmoodabadi MR (2010) Experimental study on the effects of natural zeolite on lead toxicity, growth, nodulation, and chemical composition of soybean. Commun Soil Sci Plant Anal 41(16):1896–1902CrossRefGoogle Scholar
  64. Marakatti VS, Halgeri AB (2015) Metal ion-exchanged zeolites as highly active solid acid catalysts for the green synthesis of glycerol carbonate from glycerol. RSC Adv 5(19):14286–14293CrossRefGoogle Scholar
  65. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859CrossRefPubMedPubMedCentralGoogle Scholar
  66. Ming DW, Allen ER (2001) Use of natural zeolites in agronomy, horticulture and environmental soil remediation. In: Ming DW, Bish DB (eds) Natural zeolites: occurrence, properties, applications. Mineralogical Society of America, Geochemical Society/Italian National Academy, Accademia Nationale dei Lincei (ANL), Saint Louis/Barcelona, pp 619–654CrossRefGoogle Scholar
  67. Moirou A, Xenidis A, Paspaliaris I (2001) Stabilization Pb, Zn, and cd-contaminated soil by means of natural zeolite. Soil Sediment Contam 10(3):251–267CrossRefGoogle Scholar
  68. Moore JN, Ficklin WH, Johns C (1988) Partitioning of arsenic and metals in reducing sulfidic sediments. Environ Sci Technol 22(4):432–437CrossRefGoogle Scholar
  69. Nissen LR, Lepp NW, Edwards R (2000) Synthetic zeolites as amendments for sewage sludge-based compost. Chemosphere 41(1–2):265–269CrossRefPubMedPubMedCentralGoogle Scholar
  70. Niu H, Cai Y (2012) Adsorption and concentration of organic contaminants by carbon nanotubes from environmental samples. In: Kim J (ed) Advances in nanotechnology and the environment. Pan Stanford Publishing, Singapore, pp 79–136Google Scholar
  71. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122CrossRefGoogle Scholar
  72. O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271CrossRefGoogle Scholar
  73. Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2010) Reduction of se(VI) to se(-II) by zero-valent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068CrossRefGoogle Scholar
  74. Ovenden C, Xiao H (2002) Flocculation behaviour and mechanisms of cationic inorganic microparticle/polymer systems. Colloids Surf, A 197(1–3):225–234CrossRefGoogle Scholar
  75. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional applications, vol 2. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  76. Patterson RR, Fendorf S, Fendorf M (1997) Reduction of hexavalent chromium by amorphous iron sulfide. Environ Sci Technol 31(7):2039–2044CrossRefGoogle Scholar
  77. Peld M, Kaia T, Bender V (2004) Sorption and desorption of Cd2+ and Zn2+ ions in apatite-aqueous systems. Environ Sci Technol 38(21):5626–5631CrossRefPubMedPubMedCentralGoogle Scholar
  78. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV (2008) Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res 10(5):795–814CrossRefGoogle Scholar
  79. Raicevic S, Kaludjerovic-Radoicic T, Zouboulis AI (2005) In situ stabilization of toxic metals in polluted soils using phosphates: theoretical prediction and experimental verification. J Hazard Mater 117(1):41–53CrossRefPubMedPubMedCentralGoogle Scholar
  80. Raicevic S, Wright JV, Veljkovic V, Conca JL (2006) Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium. Sci Total Environ 355(1–3):13–24CrossRefPubMedPubMedCentralGoogle Scholar
  81. Rao GP, Lu C, Su F (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol 58(1):224–231CrossRefGoogle Scholar
  82. Reinsch BC, Forsberg B, Penn RL, Kim CS, Lowry GV (2010) Chemical transformations during aging of zero valent iron nanoparticles in the presence of common groundwater dissolved constituents. Environ Sci Technol 44(9):3455–3461CrossRefPubMedPubMedCentralGoogle Scholar
  83. Renock D, Gallegos T, Utsunomiya S, Hayes K, Ewing RC, Becker U (2009) Chemical and structural characterization of As immobilization by nanoparticles of mackinaw wite (FeSm). Chem Geol 268(1–2):116–125CrossRefGoogle Scholar
  84. Revis NW, Osborne TR, Holdsworth G, Hadden C (1989) Distribution of mercury species in soil from a mercury contaminated site. Water Air Soil Pollut 45(1–2):105–113Google Scholar
  85. Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev Camb Philos Soc 76(1):27–64CrossRefPubMedPubMedCentralGoogle Scholar
  86. Riba O, Scott TB, Vala Ragnarsdottir K, Allen GC (2008) Reaction mechanism of uranyl in the presence of zero-valent iron nanoparticles. Geochim Cosmochim Acta 72(16):4047–4057CrossRefGoogle Scholar
  87. Ruby MV, Davis A, Nicholson A (1994) In situ formation of lead phosphates in soils as a method to immobilize lead. Environ Sci Technol 28(4):646–654CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sadeghiani N, Barbosa LS, Silva LP, Azevedo RB, Morais PC, Lacava ZGM (2005) Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid. J Magn Magn Mater 289:466–468CrossRefGoogle Scholar
  89. Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of presynthesis stabilized nanoscale FePd particles,” J Contam Hydrol, vol. 118, no. 3–4, pp. 117–127, 2010Google Scholar
  90. Saleh N, Kim H, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355CrossRefPubMedPubMedCentralGoogle Scholar
  91. Shanableh A, Kharabsheh A (1996) Stabilization of Cd, Ni and Pb in soil using natural zeolite. J Hazard Mater 45(2–3):207–217CrossRefGoogle Scholar
  92. Shi X, Sun K, Balogh LP, Baker JR (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554–4560CrossRefGoogle Scholar
  93. Shipley HJ, Engates KE, Guettner AM (2011) Study of iron oxide nanoparticles in soil for remediation of arsenic. J Nanopart Res 13(6):2387–2397CrossRefGoogle Scholar
  94. Stanforth R, Qiu J (2001) Effect of phosphate treatment on the solubility of lead in contaminated soil. Environ Geol 41(1–2):1–10CrossRefGoogle Scholar
  95. Stead K (2002) Environmental implications of using the natural zeolite clinoptilolite for the remediation of sludge amended soils [Ph.D. thesis], University of Surrey, Surrey, UKGoogle Scholar
  96. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48CrossRefGoogle Scholar
  98. Turan NG (2008) The effects of natural zeolite on salinity level of poultry litter compost. Bioresour Technol 99(7):2097–2101CrossRefPubMedPubMedCentralGoogle Scholar
  99. USEPA (2001) US environmental protection agency region 10, consensus plan for soil and sediment studies: Coeur d’Alene river soils and sediments bioavailability studies (URS DCN: 4162500.06161.05.a. EPA:16.2), pp 1–16.
  100. USEPA (2007) The use of soil amendments for remediation, revitalization and reuse. Solid waste and emergency response (5203P) EPA 542-R-07-013,
  101. Villaseñor J, Rodriguez L, Fernandez FJ (2011) Composting domestic sewage sludge with natural zeolites in a rotary drum reactor. Bioresour Technol 102(2):1447–1454CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wang ZS, Hung MT, Liu JC (2007) Sludge conditioning by using alumina nanoparticles and polyelectrolyte. Water Sci Technol 56(8):125–132CrossRefPubMedPubMedCentralGoogle Scholar
  103. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GAM, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77(1):117–125CrossRefPubMedPubMedCentralGoogle Scholar
  104. Watanabe T, Murata Y, Nakamura T, Sakai Y, Osaki M (2009) Effect of zero-valent iron application on cadmium uptake in rice plants grown in cadmium-contaminated soils,” J Plant Nutr, vol. 32, no. 7, pp. 1164–1172, 2009Google Scholar
  105. Wolthers M, Charlet L, van Der Weijden CH, van der Linde PR, Rickard D (2005) Arsenic mobility in the ambient sulfidic environment: sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim Cosmochim Acta 69(14):3483–3492CrossRefGoogle Scholar
  106. Xenidis A, Stouraiti C, Papassiopi N (2010) Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron. J Hazard Mater 177(1–3):929–937CrossRefPubMedPubMedCentralGoogle Scholar
  107. Xiong Z, He F, Zhao D, Barnett MO (2009) Immobilization of mercury in sediment using stabilized iron sulfide nanoparticles. Water Res 43(20):5171–5179CrossRefPubMedPubMedCentralGoogle Scholar
  108. Xueying L, O’Carroll DM, Petersen EJ, Qingguo H, Anderson CL (2009) Mobility of multiwalled carbon nanotubes in porous media. Environ Sci Technol 43(21):8153–8158CrossRefGoogle Scholar
  109. Yamamoto T, Yuya A, Satoh A, Takahasi H, Sumikoshi M, DeghaniSanij H, Agassi M (2004) Application of artificial zeolite to combat soil erosion, In: Proceedings of the American society of agricultural engineers, Canadian society for engineering of agricultural, food and biological system annual international meeting, Government Centre Ottawa, Ontario, Canada, AugustGoogle Scholar
  110. Yan S, Hua B, Bao Z, Yang J, Liu C, Deng B (2010) Uranium (VI) removal by nanoscale zerovalent iron in anoxic batch systems. Environ Sci Technol 44(20):7783–7789CrossRefPubMedPubMedCentralGoogle Scholar
  111. Yan Z, Deng Y (2000) Cationic microparticle based flocculation and retention systems. Chem Eng J 80(1–3):31–36CrossRefGoogle Scholar
  112. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3–4):323–332CrossRefGoogle Scholar
  113. Zheng M (2011) A technology for enhanced control of erosion, sediment and metal leaching at disturbed land using polyacrylamide and magnetite nanoparticles [M.S. thesis], Auburn University, Auburn, Ala, USAGoogle Scholar
  114. Zorpas AA, Constantinides T, Vlyssides AG, Haralambous I, Loizidou M (2000) Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost. Bioresour Technol 72(2):113–119CrossRefGoogle Scholar
  115. Zorpas AA, Loizidou M (2008) Sawdust and natural zeolite as a bulking agent for improving quality of a composting product from anaerobically stabilized sewage sludge. Bioresour Technol 99(16):7545–7552CrossRefPubMedPubMedCentralGoogle Scholar
  116. Zorpas AA, Vassilis I, Loizidou M, Grigoropoulou H (2002) Particle size effects on uptake of heavy metals from sewage sludge compost using natural zeolite clinoptilolite. J Colloid Interface Sci 250(1):1–4CrossRefPubMedPubMedCentralGoogle Scholar
  117. Zorpas AA, Vlyssides AG, Loizidou M (1999) Dewatered anaerobically-stabilized primary sewage sludge composting: metal leachability and uptake by natural clinoptilolite. Commun Soil Sci Plant Anal 30(11–12):1603–1613CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tamer A. Salem
    • 1
  • Nashwa A. Fetian
    • 1
  • Nabil I. Elsheery
    • 2
  1. 1.Soils, Water and Environment Research InstituteAgricultural Research CenterGizaEgypt
  2. 2.Agricultural Botany Department, Faculty of AgricultureTanta UniversityTantaEgypt

Personalised recommendations