Advertisement

Nanoparticle-Mediated Plant Gene Transfer for Precision Farming and Sustainable Agriculture

  • Jeyabalan Sangeetha
  • Khan Mohd Sarim
  • Devarajan Thangadurai
  • Amrita Gupta
  • Renu
  • Abhishek Mundaragi
  • Bhavisha Prakashbhai Sheth
  • Shabir Ahmad Wani
  • Mohd Farooq Baqual
  • Huma Habib
Chapter

Abstract

Gene transformation in plants through the intervention of genetic engineering has become potent tool in modern molecular breeding. From the last few decades, new developments have been made in transformation methods in plants. Besides a variety of gene delivery methods, Agrobacterium- and biolistic-mediated transformation has proved significant results. The crop productivity has increased through genetic engineering of plants by transformation of desirable genetic traits in agricultural crops under climate change and growing global population. Cell wall as a barrier to external biomolecular delivery remains as a challenge for efficient genetic transformation in plants. Thus, nanoparticles are promising materials for the delivery of biomolecules due to their efficiency to penetrate through this barrier without any external force. Hence, nanoparticles have the potential to deliver biomolecules in plants through genetic engineering. Application of pesticides and fertilizers indiscriminately poses environmental pollution and threat to biodiversity. In this scenario, nanotechnology has prospective future in agrobiotechnological applications to eradicate these problems by virtue of nanomaterials. Nanosized gold (5–25 nm) delivered DNA into plant cells, whereas iron oxide (30 nm)-based nanosensors identified pesticides at very minute levels. These significant functions will assist in the development of precision agriculture which reduces the risk of pollution and enhance the value of farming practices.

Keywords

Agrobacterium-mediated gene transfer Carbon nanotubes Mesoporous silica Nanomaterials Nanoparticle-mediated gene transfer Nanoplatforms Precision agriculture 

References

  1. Amani A, Zare N, Asadi A et al (2018) Ultrasound-enhanced gene delivery to alfalfa cells by hPAMAM dendrimer nanoparticles. Turk J Biol 42(1):63–75PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anami S, Njuguna E, Coussens G et al (2013) Higher plant transformation: principles and molecular tools. Int J Dev Biol 57:483–494PubMedCrossRefGoogle Scholar
  3. Ardekani MRS, Abdin MZ, Nasrullah N et al (2014) Calcium phosphate nanoparticles – a novel non-viral gene delivery system for genetic transformation of tobacco. Int J Pharm Pharm Sci 6(6):605–609Google Scholar
  4. Arencibia AD, Carmona ER, Tellez P et al (1998) An efficient protocol for sugarcane (Saccharum spp. L.) transformation mediated by Agrobacterium tumefaciens. Transgenic Res 7:1–10CrossRefGoogle Scholar
  5. Barampuram S, Zhang ZJ (2011) Recent advances in plant transformation. In: Birchler JA (ed) Plant chromosome engineering: methods in molecular biology, vol 701. Humana Press, Totowa, pp 1–35CrossRefGoogle Scholar
  6. Barton KA, Binns AN, Matzke AJM et al (1983) Regeneration of intact tobacco plants containing full length copies of genetically engineered T-DNA, and transmission of T-DNA to R1 progeny. Cell 32:1033–1043PubMedCrossRefGoogle Scholar
  7. Bergman P, Glimelius K (1993) Electroporation of rapeseed protoplasts – transient and stable transformation. Physiol Plant 88(4):604–611PubMedCrossRefGoogle Scholar
  8. Bevan M (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res 12:8711–8721PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11:705–719PubMedPubMedCentralGoogle Scholar
  10. Bower R, Birch RG (1992) Transgenic sugarcane plants via microprojectile bombardment. Plant J 2:409–416CrossRefGoogle Scholar
  11. Buléon A, Colonna P, Planchot V et al (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedCrossRefGoogle Scholar
  12. Bulgakov VP, Kiselev KV, Yakovlev KV et al (2006) Agrobacterium-mediated transformation of sea urchin embryos. Biotechnol J 1:454–461PubMedCrossRefGoogle Scholar
  13. Bundock P, den Dulk-Ras A, Beijersbergen A et al (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bundock P, Mroczek K, Winkler AA et al (1999) T-DNA from Agrobacterium tumefaciens as an efficient tool for gene targeting in Kluyveromyces lactis. Mol Gen Genet 261:115–121PubMedCrossRefGoogle Scholar
  15. Burlaka OM, Pirko YV, Yemets AI et al (2015) Plant genetic transformation using carbon nanotubes for DNA delivery. Cytol Genet 49(6):349–357CrossRefGoogle Scholar
  16. Chang FP, Kuang LY, Huang CA et al (2013) A simple plant gene delivery system using mesoporous silica nanoparticles as carriers. J Mater Chem B 1:5279–5287CrossRefGoogle Scholar
  17. Cheng M, Fry JE, Pang SZ et al (1997) Genetic transformation of wheat mediated by Agrobacterium tumefaciens. Plant Physiol 115:971–980PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cheng XY, Sardana R, Kaplan H et al (1998) Agrobacterium-transformed rice expressing synthetic cry1Ab and cry1Ac genes are highly toxic to striped stem borer and yellow stem borer. Proc Natl Acad Sci U S A 95:2767–2772Google Scholar
  19. Christie PJ, Whitaker N, Gonzalez-Rivera C (2014) Mechanism and structure of the bacterial type IV secretion systems. Biochim Biophys Acta 1843:1578–1591PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chung S-M, Frankman EL, Tzfira T (2005) A versatile vector system for multiple gene expression in plants. Trends Plant Sci 10:357–361PubMedCrossRefGoogle Scholar
  21. Corre DL, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153PubMedCrossRefGoogle Scholar
  22. Cunningham FJ, Goh NS, Demirer GS et al (2018) Nanoparticle-mediated delivery towards advancing plant genetic engineering. Trends Biotechnol 36(9):882–897PubMedCrossRefGoogle Scholar
  23. de Framond AJ, Barton KA, Chilton M-D (1983) Mini–Ti: a new vector strategy for plant genetic engineering. Nat Biotechnol 1:262–269CrossRefGoogle Scholar
  24. de Groot MJA, Bundock P, Hooykaas PJJ et al (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842PubMedCrossRefGoogle Scholar
  25. Demirer GS, Landry MP (2017) Delivering genes to plants. Chem Eng Prog 113(4):40–45Google Scholar
  26. Demirer GS, Zhang H, Matos J et al (2018) High aspect ratio nanomaterials enable biomolecule delivery and transgene expression or silencing in mature plants. bioRxiv: 179549.  https://doi.org/10.1101/179549
  27. DeRosa MC, Monreal C, Schnitzer M et al (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91.  https://doi.org/10.1038/nnano.2010.2CrossRefPubMedGoogle Scholar
  28. Direnzo F, Cambon H, Dutartre R (1997) A 28-year-old synthesis of micelle templated mesoporous silica. Microporous Mater 10(4–6):283–286CrossRefGoogle Scholar
  29. Douroumis D (2011) Mesoporous silica nanoparticles as drug delivery system. J Nanomed Nanotechnol 2:102e.  https://doi.org/10.4172/2157-7439.1000102eCrossRefGoogle Scholar
  30. Enríquez-Obregón GA, Vázquez-Padrón RI, Prieto-Samsónov DL et al (1997) Genetic transformation of sugarcane by Agrobacterium tumefaciens using antioxidants compounds. Biotecnol Apl 14:169–174Google Scholar
  31. Enríquez-Obregón GA, Vázquez-padrón RI, Prietosansonov DL et al (1998) Herbicide resistant sugarcane (Saccharum officinarum L.) plants by Agrobacterium mediated transformation. Planta 206:20–27CrossRefGoogle Scholar
  32. Finiuk N, Buziashvili A, Burlaka O et al (2017) Investigation of novel oligoelectrolyte polymer carriers for their capacity of DNA delivery into plant cells. Plant Cell Tissue Organ Cult 131(1):27–39CrossRefGoogle Scholar
  33. Fischer G, Frohberg K, Parry ML et al (1994) Climate change and world food supply, demand and trade: who benefits, who loses? Glob Environ Chang 4(1):7–23CrossRefGoogle Scholar
  34. Fromm M, Taylor LP, Walbot V (1985) Expression of genes transferred into monocot and dicot plant cells by electroporation. Proc Natl Acad Sci U S A 82(17):5824–5828PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fromm ME, Morrish F, Armstrong C et al (1990) Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8:833–839PubMedPubMedCentralGoogle Scholar
  36. Gelvin SB (2010) Plant proteins involved in Agrobacterium-mediated genetic transformation. Annu Rev Phytopathol 48:45–68PubMedCrossRefGoogle Scholar
  37. Gelvin SB (2012) Traversing the cell: Agrobacterium T-DNA’s journey to the host genome. Front Plant Sci 3:52.  https://doi.org/10.3389/fpls.2012.00052CrossRefPubMedPubMedCentralGoogle Scholar
  38. Gepts P (2002) A comparison between crop domestication, classical plant breeding, and genetic engineering. Crop Sci 42(6):1780–1790CrossRefGoogle Scholar
  39. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803PubMedCrossRefGoogle Scholar
  40. Ghosh PS, Kim CK, Han G et al (2008) Efficient gene delivery vectors by tuning the surface charge density of amino acid-functionalized gold nanoparticles. ACS Nano 2(11):2213–2218PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hao Y, Yang X, Shi Y et al (2013) Magnetic gold nanoparticles as a vehicle for fluorescein isothiocyanate and DNA delivery into plant cells. Botany 91(7):457–466CrossRefGoogle Scholar
  42. Hellens R, Mullineaux P, Klee H (2000) Technical focus: a guide to Agrobacterium binary Ti vectors. Trends Plant Sci 5:446–451PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hiei Y, Ohta S, Komari T et al (1994) Efficient transformation of rice (Oryza sativa) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  44. Hoekema A, Hirsch PR, Hooykaas PJJ et al (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180CrossRefGoogle Scholar
  45. Hongmin C, Zipeng Z, Jin X (2013) Label-free luminescent mesoporous silica nanoparticles for imaging and drug delivery. Theranostic 3:650–670CrossRefGoogle Scholar
  46. Hooykaas PJJ (2004) Transformation mediated by Agrobacterium tumefaciens. In: Tkacz JS, Lange L (eds) Advances in fungal biotechnology for industry, agriculture, and medicine. Springer, Boston, pp 41–65CrossRefGoogle Scholar
  47. Hu H, Xiong L (2014) Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65:715–741PubMedCrossRefGoogle Scholar
  48. Huang Y, Deng W, Guo E et al (2012) Mesoporous silica nanoparticle-stabilized and manganese-modified rhodium nanoparticles as catalysts for highly selective synthesis of ethanol and acetaldehyde from syngas. Chem Cat Chem 4:674–680Google Scholar
  49. Iida A, Seki M, Kamada M et al (1990) Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor Appl Genet 80:813–816PubMedPubMedCentralCrossRefGoogle Scholar
  50. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650CrossRefGoogle Scholar
  51. Iriti M, Varoni EM (2015) Chitosan-induced antiviral activity and innate immunity in plants. Environ Sci Pollut Res 22:2935–2944CrossRefGoogle Scholar
  52. Ishida Y, Saito H, Ohta S (1996) High efficiency transformation of maize (Zea mayz L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 4:745–750CrossRefGoogle Scholar
  53. Ismagul A, Yang N, Maltseva E et al (2018) A biolistic method for high throughput production of transgenic wheat plants with single gene insertions. BMC Plant Biol 18(1):135.  https://doi.org/10.1186/s12870-018-1326-1CrossRefPubMedPubMedCentralGoogle Scholar
  54. Jardinaud MF, Souvré A, Beckert M et al (1995) Optimisation of DNA transfer and transient β-glucuronidase expression in electroporated maize (Zea mays L.) microspores. Plant Cell Rep 15:55.  https://doi.org/10.1007/BF01690253CrossRefPubMedGoogle Scholar
  55. Jiang L, Ding L, He B et al (2014) Systemic gene silencing in plants triggered by fluorescent nanoparticle-delivered double-stranded RNA. Nanoscale 6(17):9965–9969PubMedCrossRefGoogle Scholar
  56. Jogdand SN (2006) Gene biotechnology. Himalaya Publishing House, Mumbai, pp 237–249Google Scholar
  57. Joldersma D, Liu Z (2018) Plant genetics enters the nano age? J Integr Plant Biol 60(6):446–447PubMedCrossRefGoogle Scholar
  58. Kámán-Tóth E, Pogány M, Dankó T et al (2018) A simplified and efficient Agrobacterium tumefaciens electroporation method. 3Biotech 8(3):148.  https://doi.org/10.1007/s13205-018-1171-9CrossRefGoogle Scholar
  59. Karimi M, Ghasemi A, Zangabad PS et al (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev 45(5):1457–1501PubMedPubMedCentralCrossRefGoogle Scholar
  60. Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51PubMedCrossRefGoogle Scholar
  61. Kelly BA, Kado CI (2002) Agrobacterium-mediated T-DNA transfer and integration into the chromosome of Streptomyces lividans. Mol Plant Pathol 3:125–134PubMedCrossRefGoogle Scholar
  62. Keshamma E, Rohini S, Rao KS et al (2008) Tissue culture independent in planta transformation strategy: an Agrobacterium tumefaciens-mediated gene transfer method to overcome recalcitrance in cotton (Gossypium hirsutum L.). J Cotton Sci 12:264–272Google Scholar
  63. Kikkert JR (1993) The biolistic® PDS-1000/He device. Plant Cell Tissue Organ Cult 33:221–226CrossRefGoogle Scholar
  64. Klichko Y, Liong M, Choi E et al (2009) Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc 92:2–10CrossRefGoogle Scholar
  65. Komari T, Takakura Y, Ueki J et al (2006) Binary vectors and super-binary vectors. Methods Mol Biol 343:15–41PubMedGoogle Scholar
  66. Koop HU, Kofer W (1995) Plastid transformation by polyethylene glycol treatment of protoplasts and regeneration of transplastomic tobacco plants. In: Potrykus I, Spangenberg G (eds) Gene transfer to plants. Springer, New York, pp 75–82CrossRefGoogle Scholar
  67. Kumar SV, Misquitta RW, Reddy VS et al (2004) Genetic transformation of the green alga – Chlamydomonas reinhardtii by Agrobacterium tumefaciens. Plant Sci 166:731–738CrossRefGoogle Scholar
  68. Kunik T, Tzfira T, Kapulnik Y et al (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876PubMedPubMedCentralCrossRefGoogle Scholar
  69. Lacroix B, Citovsky V (2013) The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. Int J Dev Biol 57:467–481PubMedCrossRefGoogle Scholar
  70. Lacroix B, Tzfira T, Vainstein A et al (2006) A case of promiscuity: Agrobacterium’s endless hunt for new partners. Trends Genet 22:29–37PubMedCrossRefGoogle Scholar
  71. Lee LY, Gelvin SB (2008) T-DNA binary vectors and systems. Plant Physiol 146:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  72. Li Z, Nyalosaso JL, Hwang AA et al (2011) Measurement of uptake and release capacities of mesoporous silica nanoparticles enabled by nanovalve gates. J Phys Chem C 115:19496–19506CrossRefGoogle Scholar
  73. Lin S, Reppert J, Hu Q et al (2009) Uptake, translocation, and transmission of carbon nanomaterials in rice plants. Small 5(10):1128–1132PubMedGoogle Scholar
  74. Lin X, Xie J, Niu G et al (2011) Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett 11:814–819PubMedPubMedCentralCrossRefGoogle Scholar
  75. Liong M, Lu J, Kovochich M et al (2008) Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano 2:889–896PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu H, Kawabe A, Matsunaga S et al (2004) Obtaining transgenic plants using the bio-active beads method. J Plant Res 117(2):95–99PubMedCrossRefGoogle Scholar
  77. Liu J, Wang FH, Wang LL et al (2008) Preparation of fluorescence starch-nanoparticle and its application as plant transgenic vehicle. J Cent S Univ Technol 15(6):768–773CrossRefGoogle Scholar
  78. Liu Q, Chen B, Wang Q et al (2009) Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett 9(3):1007–1010PubMedCrossRefGoogle Scholar
  79. Loh XJ, Lee TC, Dou Q et al (2016) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4(1):70–86PubMedCrossRefGoogle Scholar
  80. Ma Y, Zhang P, Zhang Z et al (2015) Where does the transformation of precipitated ceria nanoparticles in hydroponic plants take place? Environ Sci Technol 49(17):10667–10674PubMedCrossRefGoogle Scholar
  81. Malerba M, Cerana R (2016) Chitosan effects on plant systems. Int J Mol Sci 17(7):996.  https://doi.org/10.3390/ijms17070996CrossRefPubMedCentralPubMedGoogle Scholar
  82. Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62:12–27PubMedCrossRefGoogle Scholar
  83. Martin-Ortigosa S, Valenstein JS, Sun W et al (2012a) Parameters affecting the efficient delivery of mesoporous silica nanoparticle materials and gold nanorods into plant tissues by the biolistic method. Small 8(3):413–422PubMedCrossRefGoogle Scholar
  84. Martin-Ortigosa S, Valenstein JS, Lin VSY et al (2012b) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22(7):3576–3582CrossRefGoogle Scholar
  85. Martin-Ortigosa S, Peterson DJ, Valenstein JS et al (2014) Mesoporous silica nanoparticle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547PubMedCrossRefGoogle Scholar
  86. McHale M, Eamens AL, Finnegan EJ et al (2013) A 22-nt artificial microRNA mediates widespread RNA silencing in Arabidopsis. Plant J 76:519–529PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mehrotra S, Goyal V (2012) Agrobacterium-mediated gene transfer in plants and biosafety considerations. Appl Biochem Biotechnol 168:1953–1975PubMedCrossRefGoogle Scholar
  88. Michielse CB, Hooykaas PJJ, van den Hondel et al (2005) Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1–17PubMedCrossRefGoogle Scholar
  89. Mirzaei H, Darroudi M (2017) Zinc oxide nanoparticles: biological synthesis and biomedical applications. Ceram Int 43(1):907–914CrossRefGoogle Scholar
  90. Mitter N, Worrall EA, Robinson KE et al (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207.  https://doi.org/10.1038/nplants.2016.207CrossRefPubMedGoogle Scholar
  91. Moeller L, Wang K (2008) Engineering with precision: tools for the new generation of transgenic crops. Bioscience 58(5):391–401CrossRefGoogle Scholar
  92. Morikawa H, Iida A, Yamada Y (1989) Transient expression of foreign genes in plant cells and tissues obtained by a simple biolistic device (particle-gun). Appl Microbiol Biotechnol 31:320–322CrossRefGoogle Scholar
  93. Murry LE, Elliot LG, Capitant SA et al (1993) Transgenic corn plants expressing MDMV strain B coat protein are resistant to mixed infections of maize dwarf mosaic virus and maize chlorotic mottle virus. Biotechnology 11(13):1559–1564PubMedGoogle Scholar
  94. Nadagouda MN, Speth TF, Varma RS (2011) Microwave-assisted green synthesis of silver nanostructures. Acc Chem Res 44(7):469–478PubMedCrossRefGoogle Scholar
  95. Naqvi S, Maitra AN, Abdin MZ et al (2012) Calcium phosphate nanoparticle mediated genetic transformation in plants. J Mater Chem 22:3500–3507CrossRefGoogle Scholar
  96. Negrutiu I, Shillito R, Potrykus I et al (1987) Hybrid genes in the analysis of transformation conditions. I: setting up a simple method for direct gene transfer in plant protoplasts. Plant Mol Biol 8:363–373PubMedCrossRefGoogle Scholar
  97. Negrutiu I, Dewulf J, Pietrzak M et al (1990) Hybrid genes in the analysis of transformation conditions. II: transient expression vs. stable transformation – analysis of parameters influencing gene expression levels and transformation efficiency. Physiol Plant 79:197–205CrossRefGoogle Scholar
  98. O’Brien JA, Lummis SCR (2011) Nano-biolistics: a method of biolistic transfection of cells and tissues using a gene gun with novel nanometer-sized projectiles. BMC Biotechnol 11:66.  https://doi.org/10.1186/1472-6750-11-66CrossRefPubMedPubMedCentralGoogle Scholar
  99. Osman GH, Aseem SK, Alreedy RM et al (2015) Development of insect resistant maize plants expressing a chitinase gene from the cotton leaf worm, Spodoptera littoralis. Sci Rep 5:18067.  https://doi.org/10.1038/srep18067CrossRefPubMedPubMedCentralGoogle Scholar
  100. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles – the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity volume 2: functional applications. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  101. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347PubMedCrossRefGoogle Scholar
  102. Paoletti MG, Pimentel D (2000) Environmental risks of pesticides versus genetic engineering for agricultural pest control. J Agric Environ Ethics 12(3):279–303CrossRefGoogle Scholar
  103. Park IY, Kim IY, Yoo MK et al (2008) Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor mediated gene delivery. Int J Pharm 359:280–287PubMedCrossRefGoogle Scholar
  104. Pasupathy K, Lin S, Hu Q et al (2008) Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnol J 3(8):1078–1082PubMedCrossRefGoogle Scholar
  105. Patnaik G, Khurana P (2003) Genetic transformation of Indian bread (T. aestivum) and pasta (T. durum) wheat by particle bombardment of mature embryo-derived calli. BMC Plant Biol 3:5.  https://doi.org/10.1186/1471-2229-3-5CrossRefPubMedPubMedCentralGoogle Scholar
  106. Pavani C (2006) Development and characterisation of transgenics over expressing cry genes in field bean against Helicoverpa armigera (Hubner). MSc thesis, University of Agricultural Sciences, Bangalore, India, pp 1–99Google Scholar
  107. Pelczar P, Kalck V, Gomez D et al (2004) Agrobacterium proteins VirD2 and VirE2 mediate precise integration of synthetic TDNA complexes in mammalian cells. EMBO Rep 5:632–637PubMedPubMedCentralCrossRefGoogle Scholar
  108. Piers KL, Heath JD, Liang X et al (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc Natl Acad Sci U S A 93:1613–1618PubMedPubMedCentralCrossRefGoogle Scholar
  109. Pitzschke A (2013) Agrobacterium infection and plant defense-transformation success hangs by a thread. Front Plant Sci 4:519.  https://doi.org/10.3389/fpls.2013.00519CrossRefPubMedPubMedCentralGoogle Scholar
  110. Plackett ARG, Huang L, Sanders HL et al (2014) High-efficiency stable transformation of the model fern species Ceratopteris richardii via microparticle bombardment. Plant Physiol 165:3–14PubMedPubMedCentralCrossRefGoogle Scholar
  111. Potter H, Heller R (2003) Transfection by electroporation. Curr Protoc Mol Biol 62(1):9.3.1–9.3.6.  https://doi.org/10.1002/0471142727.mb0903s62CrossRefGoogle Scholar
  112. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  113. Rai M, Deshmukh S, Gade A (2012) Strategic nanoparticle-mediated gene transfer in plants and animals – a novel approach. Curr Nanosci 8(1):170–179CrossRefGoogle Scholar
  114. Rao KS, Rohini VK (1999) Agrobacterium-mediated transformation of sunflower (Helianthus annus L.): a simple protocol. Ann Bot 83:347–354CrossRefGoogle Scholar
  115. Ray DK, Mueller ND, West PC et al (2013) Yield trends are insufficient to double global crop production by 2050. PLoS One 8(6):e66428.  https://doi.org/10.1371/journal.pone.0066428CrossRefPubMedPubMedCentralGoogle Scholar
  116. Rivera AL, Gomez-Lim M, Fernandez F et al (2012) Physical methods for genetic plant transformation. Phys Life Rev 9(3):308–345CrossRefPubMedGoogle Scholar
  117. Rohini VK, Rao KS (2000a) Embryo transformation, a practical approach for realizing transgenic plants of safflower (Carthamus tinctorius L.). Ann Bot 86:1043–1049CrossRefGoogle Scholar
  118. Rohini VK, Rao KS (2000b) Transformation of peanut (Arachis hypogaea L.): a non–tissue culture based approach for generating transgenic plants. Plant Sci 150:41–49CrossRefGoogle Scholar
  119. Rohini VK, Rao KS (2001) Transformation of peanut (Arachis hypogaea L.) with tobacco chitinase gene: variable response of transformants to leaf spot disease. Plant Sci 160:889–898PubMedCrossRefGoogle Scholar
  120. Roy K, Mao HQ, Huang SK et al (1999) Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nat Med 5(4):387–391PubMedCrossRefGoogle Scholar
  121. Sanford JC (1988) The biolistic process. Trends Biotechnol 6:299–302CrossRefGoogle Scholar
  122. Sanford JC (1990) Biolistic plant transformation. Physiol Plant 79(1):206–209CrossRefGoogle Scholar
  123. Seabra AB, Rai M, Durán N (2015) Emerging role of nanocarriers in delivery of nitric oxide for sustainable agriculture. In: Nanotechnologies in food and agriculture. Springer, Cham, pp 183–207Google Scholar
  124. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  125. Shchipunov YA, Burtseva YV, Karpenko TY et al (2006) Highly efficient immobilization of endo-1,3-beta-D-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J Mol Catal 40:16–23CrossRefGoogle Scholar
  126. Singh P, Kim YJ, Zhang D et al (2016) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34(7):588–599PubMedCrossRefGoogle Scholar
  127. Sivamani E, DeLong RK, Qu R (2009) Protamine-mediated DNA coating remarkably improves bombardment transformation efficiency in plant cells. Plant Cell Rep 28(2):213–221CrossRefPubMedGoogle Scholar
  128. Slowing II, Vivero-Escoto JL, Wu CW et al (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288PubMedCrossRefGoogle Scholar
  129. Sokolova V, Epple M (2008) Inorganic nanoparticles as a carrier for nucleic acid into cells. Angew Chem Int Ed Eng 47(8):1382–1395CrossRefGoogle Scholar
  130. Sooyeon K, Singh RK, Wojciech C (2013) Silica-based mesoporous nanoparticles for controlled drug delivery. J Tissue Eng 4:1–35Google Scholar
  131. Southgate EM, Davey MR, Power JB et al (1995) Factors affecting the genetic engineering of plants by microprojectile bombardment. Biotechnol Adv 13:631–651PubMedCrossRefGoogle Scholar
  132. Sparks CA, Jones HD (2014) Genetic transformation of wheat via particle bombardment. In: Henry JR, Furtado A (eds) Cereal genomics: methods and protocols. Humana Press, Totowa, pp 201–218CrossRefGoogle Scholar
  133. Srilatha J (2011) Nanotechnology in agriculture. Nanomed Nanotechnol 2:7.  https://doi.org/10.4172/2157-7439.1000123CrossRefGoogle Scholar
  134. Sun Q (2018) Starch nanoparticles. In: Sjoo M, Nilsson L (eds) Starch in food: structure, function and applications. Woodhead Publishing, Cambridge, pp 691–745CrossRefGoogle Scholar
  135. Taylor NJ, Fauquet CM (2002) Microparticle bombardment as a tool in plant science and agricultural biotechnology. DNA Cell Biol 21:963–977PubMedCrossRefGoogle Scholar
  136. Taylor AF, Rylott EL, Anderson CW et al (2014) Investigating the toxicity, uptake, nanoparticle formation and genetic response of plants to gold. PLoS One 9(4):e93793.  https://doi.org/10.1371/journal.pone.0093793CrossRefPubMedPubMedCentralGoogle Scholar
  137. Thul ST, Sarangi BK, Pandey RA (2013) Nanotechnology in agroecosystem: implications on plant productivity and its soil environment. Expert Opin Environ Biol 2:1.  https://doi.org/10.4172/2325-9655.1000101CrossRefGoogle Scholar
  138. Torney F, Trewyn BG, Lin VSY et al (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedPubMedCentralCrossRefGoogle Scholar
  139. Tourne-Peteilh C, Begu S, Lerner DA et al (2012) Sol-gel one-pot synthesis in soft conditions of mesoporous silica materials ready for drug delivery system. J Solgel Sci Technol 61:455–462CrossRefGoogle Scholar
  140. Trewyn BG, Slowing II, Giri S et al (2007) Synthesis and functionalization of a mesoporous silica nanoparticle based on the Sol–Gel process and applications in controlled release. Acc Chem Res 40(9):846–853PubMedCrossRefGoogle Scholar
  141. Truong-Le VL, Walsh SM, Schwabert E et al (1999) Gene transfer by DNA-gelatin nanospheres. Arch Biochem Biophys 361:47–56PubMedCrossRefGoogle Scholar
  142. Vijayakumar PS, Abhilash OU, Khan BM et al (2010) Nanogold-loaded sharp-edged carbon bullets as plant-gene carriers. Adv Funct Mater 20(15):2416–2423CrossRefGoogle Scholar
  143. Wang Q, Chen J, Zhang H et al (2011) Synthesis of water soluble quantum dots for monitoring carrier-DNA nanoparticles in plant cells. J Nanosci Nanotechnol 11(3):2208–2214PubMedCrossRefGoogle Scholar
  144. Wang P, Lombi E, Zhao FJ et al (2016) Nanotechnology: a new opportunity in plant sciences. Trends Plant Sci 21(8):699–712PubMedCrossRefGoogle Scholar
  145. Wong TK, Neumann E (1982) Electric field mediated gene transfer. Biochem Biophys Res Commun 107:584–587PubMedCrossRefGoogle Scholar
  146. Wu SH, Mou CY, Lin HP (2013) Synthesis of mesoporous silica nanoparticles. Chem Soc Rev 42:3862–3875PubMedCrossRefGoogle Scholar
  147. Yanagisawa T, Shimizu T, Kuroda K, Kato C (1990) The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull Chem Soc Jpn 63(4):988–992CrossRefGoogle Scholar
  148. Yu-Qin F, Lu-Hua L, Pi-Wu W et al (2012) Delivering DNA into plant cell by gene carriers of ZnS nanoparticles. Chem Res Chin Univ 28(4):672–676Google Scholar
  149. Zaenen I, Van Larebeke N, Van Montagu M et al (1974) Supercoiled circular DNA in crown gall-inducing Agrobacterium strains. J Mol Biol 86(1):109–127PubMedCrossRefGoogle Scholar
  150. Zambryski P, Joos H, Genetello C et al (1983) Ti-plasmid vector for the introduction of DNA into plant-cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150PubMedPubMedCentralCrossRefGoogle Scholar
  151. Zhao X, Meng Z, Wang Y et al (2017) Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat Plants 3(12):956–964PubMedCrossRefGoogle Scholar
  152. Zhou J, Zhang Y, Hu T et al (2018) Functional characterization of squalene epoxidase genes in the medicinal plant Tripterygium wilfordii. Int J Biol Macromol 120(A):203–212PubMedCrossRefGoogle Scholar
  153. Zupan JR, Zambryski PC (1995) Transfer of T-DNA from Agrobacterium to the plant cell. Plant Physiol 107:1041–1047PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Jeyabalan Sangeetha
    • 1
  • Khan Mohd Sarim
    • 2
  • Devarajan Thangadurai
    • 3
  • Amrita Gupta
    • 2
  • Renu
    • 2
  • Abhishek Mundaragi
    • 4
  • Bhavisha Prakashbhai Sheth
    • 5
  • Shabir Ahmad Wani
    • 6
  • Mohd Farooq Baqual
    • 6
  • Huma Habib
    • 7
  1. 1.Department of Environmental ScienceCentral University of KeralaKasaragodIndia
  2. 2.ICAR-National Bureau of Agriculturally Important MicroorganismsKushmaur, Maunath BhanjanIndia
  3. 3.Department of BotanyKarnatak UniversityDharwadIndia
  4. 4.Department of MicrobiologyDavangere UniversityDavangereIndia
  5. 5.DST-Centre for Policy Research in Science and Technology Entrepreneurship, Entrepreneurship Development Institute of IndiaGandhinagarIndia
  6. 6.Temperate Sericulture Research Institute (Mirgund)Sher e Kashmir University of Agricultural Sciences and Technology of KashmirSrinagarIndia
  7. 7.Department of BiochemistryIslamia College of Science and CommerceSrinagarIndia

Personalised recommendations