Soil Ecological Pros and Cons of Nanomaterials: Impact on Microorganisms and Soil Health

  • Bandeppa
  • R. Gobinath
  • P. C. Latha
  • V. Manasa
  • Satish Chavan


Nanotechnology is a novel technology that is currently emerging and may soon be used in every branch of agriculture. In the area of agriculture, scientific production is evident, concentrating on nano-agrochemicals, from nanopesticides to nanofertilizers. There has been a great interest in the use of nanomaterials in crop production and crop protection-based agriculture. However, the existing research reveals that the mixed response from the nanoparticle exposure on plants, microbes and soil starts from enhanced crop yield to genetic alteration. The rapid development of nanotechnology in agriculture sector could lead to release of huge amount of engineered nanoparticles, which may cause adverse effects on soil environment. Assessing the safety of nano-mediated chemicals related to human and environmental health, as emerging contaminants, needs to be addressed. With this in mind, this chapter explores the interesting aspects related to use, benefits, and potential challenges with both positive and negative effects of added nanomaterials with respect to the microbial diversity and health of soil.


Nanoparticles Ecology Microbial diversity Soil health Soil environment 


  1. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532PubMedCrossRefPubMedCentralGoogle Scholar
  2. Adewopo JB, Van Zomeren C, Bhomia RK, Almaraz M, Bacon AR, Eggleston E, Judy JD, Lewis RW, Lusk M, Miller B, Moorberg C, Hodges E, Tiedeman M (2014) Top-ranked priority research questions for soil science in the 21st century. Soil Sci Soc Am J 78:337–347CrossRefGoogle Scholar
  3. Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial Community in Soil Slurries: role of nanoparticle size and surface coating, environmental science. Nano 4(4). Scholar
  4. Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:1–28CrossRefGoogle Scholar
  5. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2008) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641CrossRefGoogle Scholar
  6. Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646PubMedCrossRefPubMedCentralGoogle Scholar
  7. Biswas P, Wu CY (2005) Critical review: nanoparticles and the environment. J Air Waste Manag 55:708–746CrossRefGoogle Scholar
  8. Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200. Scholar
  9. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8PubMedPubMedCentralGoogle Scholar
  10. Calvarro LM, de Santiago-Martn A, Gomez JQ, Huecas GC, Quintana JR, Vázquez A (2014) Biological activity in metal contaminated calcareous agricultural soils: the role of the organic matter composition and the particle size distribution. Environ Sci Pollut Res. Scholar
  11. Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1171PubMedCrossRefPubMedCentralGoogle Scholar
  12. Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8(2):e57189. Scholar
  13. De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Anton Leeuw Int J Gen Mol Microbiol 90:377–389CrossRefGoogle Scholar
  14. Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15CrossRefGoogle Scholar
  15. Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences-nanoparticles and their impact on plants. Springer, ChamGoogle Scholar
  16. Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664PubMedCrossRefPubMedCentralGoogle Scholar
  18. Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758PubMedPubMedCentralCrossRefGoogle Scholar
  19. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900PubMedCrossRefPubMedCentralGoogle Scholar
  20. Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  21. Hass D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annual reviews in. Phytopathology 41:117–153CrossRefGoogle Scholar
  22. Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177PubMedCrossRefPubMedCentralGoogle Scholar
  23. Hinsinger P, Marschner P (2006) Rhizosphere perspectives and challenges- a tribute to Lorenz Hiltner 12-17 September 2004 Munich, Germany. Plant Soil 283:7–8CrossRefGoogle Scholar
  24. Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993PubMedCrossRefPubMedCentralGoogle Scholar
  25. Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China: a review. Agron Sustain Dev 35:369–400CrossRefGoogle Scholar
  26. Hwang ET, Lee JH, Chae YJ, Kim BC, Sang BI, Gu MB (2007) Analysis of nanoparticles’ toxic modes of actions by using recombinant bioluminescent bacteria. In Abstracts, American Institute of Chemical Engineers Meeting, Salt Lake City, UT, USA, November 4–9Google Scholar
  27. Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295:115–123PubMedCrossRefPubMedCentralGoogle Scholar
  28. Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23CrossRefGoogle Scholar
  29. Josko P, Oleszczuk B, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537CrossRefGoogle Scholar
  30. Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414. Scholar
  31. Kai Y, Komazawa Y, Miyajima A, Miyata N, Yamakoshi Y (2003) Fullerene as a novel photoinduced antibiotic. Fullerines, Nanotubes, Carbon Nanostruct 11:79–87CrossRefGoogle Scholar
  32. Kanerva T, Palojarvi A, Ramo K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510CrossRefGoogle Scholar
  33. Kaye JP, Mc Culley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587CrossRefGoogle Scholar
  34. Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347PubMedCrossRefPubMedCentralGoogle Scholar
  35. Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine dependent mechanisms. Appl Environ Microbiol 71:2548–2557PubMedPubMedCentralCrossRefGoogle Scholar
  36. Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822PubMedCrossRefGoogle Scholar
  37. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedCrossRefPubMedCentralGoogle Scholar
  38. Lin S, Keskar D, Wu Y, Wang X, Mount AS, Klaine SJ, More JM, Rao AM, Ke PC (2007) Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Appl Phys Lett 89:143118CrossRefGoogle Scholar
  39. Lyon DY, Thill A, Rose J, Alvarez PJJ (2007) Ecotoxicological impacts of nanomaterials. In: Wiesner MR, Bottero J-Y (eds) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York, pp 445–480Google Scholar
  40. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061PubMedCrossRefGoogle Scholar
  41. Mashino T, Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M (1999) Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg Med Chem Lett 9:2959–2962PubMedCrossRefPubMedCentralGoogle Scholar
  42. McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246PubMedPubMedCentralCrossRefGoogle Scholar
  43. McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community 1197 responses to contamination with silver, aluminium oxide and silicon dioxide 1198 nanoparticles. Ecotoxicology 26(3):449–458. Scholar
  44. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446PubMedCrossRefPubMedCentralGoogle Scholar
  45. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: physiology and function. Kluwer Academic Press, LondonGoogle Scholar
  46. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. J Nanotechnol 16:2346–2353CrossRefGoogle Scholar
  47. Musee N (2010) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30:1181–1195PubMedCrossRefPubMedCentralGoogle Scholar
  48. Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick R (eds) Enzymes in the environment, vol 45. Marcel Dekker, New York, pp 1–33Google Scholar
  49. Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Pollution (Barking, Essex : 1987) 157:1063–1064. Scholar
  50. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles - the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional Applications, vol 2. Springer, New Delhi, pp 289–300CrossRefGoogle Scholar
  51. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  52. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293PubMedCrossRefPubMedCentralGoogle Scholar
  53. Rincon A, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 implications in solar water disinfection. Appl Catal B Environ 51:283–302CrossRefGoogle Scholar
  54. Rousk J, Rousk K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7(3):e34197PubMedPubMedCentralCrossRefGoogle Scholar
  55. Rozhkov SP, Goryunov AS, Sukhanova GA, Borisova AG, Rozhkova NN, Andrievsky GV (2003) Protein interaction with hydrated C(60) fullerene in aqueous solutions. Biochem Biophys Res Commun 303:562–566PubMedCrossRefPubMedCentralGoogle Scholar
  56. Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Change Biol 3:217–224CrossRefGoogle Scholar
  57. Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Effect of ceramic powder slurry on spores of Bacillus subtilis. J Chem Eng Jpn 28:556–561CrossRefGoogle Scholar
  58. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB (2004) The differential cytotoxicity of water soluble fullerenes. Nano Lett 4:1881–1887CrossRefGoogle Scholar
  59. Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri-food systems. Int J Sociol Food Agric 15:22–44Google Scholar
  60. Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, ChamGoogle Scholar
  61. Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553PubMedCrossRefPubMedCentralGoogle Scholar
  62. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. J Colloid Interface Sci 275:177–182PubMedCrossRefPubMedCentralGoogle Scholar
  63. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89PubMedCrossRefPubMedCentralGoogle Scholar
  64. Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001CrossRefGoogle Scholar
  65. Tarafdar JC, Adhikari T (2015) Nanotechnology in soil science. In: Rattan RK et al (eds) Soil science: an introduction. Indian Society of Soil Science, Calcutta, pp 775–807Google Scholar
  66. Thill A, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli: a physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156PubMedCrossRefPubMedCentralGoogle Scholar
  67. Tiedje JM, Cho JC, Murray A, Treves D, Xia B, Zhou J (2001) Soil teeming with life: new frontiers for soil science. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CAB International, Wallingford, pp 393–412CrossRefGoogle Scholar
  68. TNVKV P, Sudhaka P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nano scale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutri 35(6):905–927CrossRefGoogle Scholar
  69. Tolaymat T, El Badawy A, Genaidy A, Abdelraheem W, Sequeira R (2017) Analysis of metallic and metal oxide nanomaterial environmental emissions. J Clean Prod 143:401–412CrossRefGoogle Scholar
  70. Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991PubMedCrossRefPubMedCentralGoogle Scholar
  71. Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692PubMedCrossRefPubMedCentralGoogle Scholar
  72. Torsvik V, Ovreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tran CL, Danaldson K, Stones V, Fernandez T, Ford A, Christofi N, Ayres JG, Steiner M, Hurley JF, Aitken RJ (2015) A scoping study to identify Hazard data needs for addressing risks presented by nanoparticles and nanotubes. Institute of Occupational Medicine (IOM) Research Report, EdinburghGoogle Scholar
  74. Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemothermogens 43:2273–2277CrossRefGoogle Scholar
  75. Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylemand phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefPubMedCentralGoogle Scholar
  76. Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433CrossRefGoogle Scholar
  77. Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1284–1297PubMedCrossRefPubMedCentralGoogle Scholar
  78. Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. Rev Environ Contam Toxicol 230:83–110PubMedPubMedCentralGoogle Scholar
  79. You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18:2179–2187Google Scholar
  80. Zuin S, Gaiani M, Ferrari A, Golanski L (2013) Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanopart Res 16(1):2185–2191CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Bandeppa
    • 1
  • R. Gobinath
    • 1
  • P. C. Latha
    • 1
  • V. Manasa
    • 1
  • Satish Chavan
    • 1
  1. 1.ICAR-Indian Institute of Rice ResearchHyderabadIndia

Personalised recommendations