Advertisement

Oxidative Stress-Induced Mitochondrial Dysfunction and Asthma

  • Samarpana Chakraborty
  • Kritika Khanna
  • Anurag AgrawalEmail author
Chapter

Abstract

Asthma is a well-recognized global concern with ever-increasing prevalence and economic burden worldwide. Genetic susceptibility and exposure to environmental triggers such as allergens, pollutants, infectious agents and even lifestyle choices are well-established modulators of the disease. Recent studies show that irrespective of the nature of causal trigger (allergic or nonallergic), mitochondria and its dysfunction is a central player in asthma pathogenesis. This chapter discusses the studies and mechanisms through which mitochondria plays its role in causing asthma pathogenesis. Under allergic asthma conditions, immune response and epithelial barrier functions are the key players modulating the function of mitochondria. Other mechanism that leads to the development of obese-asthma phenotype involves disruption of cellular bioenergetics via modulating nitric oxide levels, calcium homeostasis, etc. Repair, reprogramming and/or replacement of the dysfunctional mitochondria are some of the possible therapeutic strategies for better management of asthma.

Keywords

Allergic asthma Obese-asthma Mitochondrial dysfunction Oxidative stress Immune responses Epithelial barrier function Nitric oxide metabolism Lipoxygenase pathway Obesity Metabolic syndrome ADMA 

Abbreviations

12/15-LOX

12/15-lipoxygenase

12-S-HETE

12-S-hydroxyeicosatetraenoic acid

13-S-HODE

13-S-hydroxyoctadecadienoic acid

ADMA

Asymmetric dimethylarginine

AMP

Adenosine monophosphate

ATP

Adenosine triphosphate

CaMKII

Ca2+/calmodulin-dependent protein kinase II

CLR

C-type lectin receptors

DAMP

Damage-associated molecular pattern

DC

Dendritic cell

DRP1

Dynamin-related protein 1

eNOS

Endothelial nitric oxide synthase

ETC

Electron transport chain

FADH2

2-Dihydro flavin adenine dinucleotide

HDM

House dust mite

IgE

Immunoglobulin E

IL

Interleukins

LPS

Lipopolysaccharide

MCU

Mitochondrial calcium uniporter

MetS

Metabolic syndrome

MHC II

Major histocompatibility complex class II

MSC

Mesenchymal stem cell

mtDNA

Mitochondrial DNA

NADH

Nicotinamide adenine dinucleotide (reduced)

NADPH

Nicotinamide adenine dinucleotide phosphate (reduced)

nDNA

Nuclear DNA

NF-kβ

Nuclear factor kappa-light-chain-enhancer of activated B cells

NFP

N-Formyl peptides

NLR

Nucleotide-binding domain/leucine-rich repeat receptor

NLRP3

Nod-like receptor family pyrin domain containing 3

NO

Nitric oxide

NRF-1

Nuclear respiratory factor-1

OONO

Peroxynitrite

OPA1

Optic atrophy protein 1

OVA

Ovalbumin

PAMP

Pathogen-associated molecular pattern

PBMCs

Peripheral blood mononuclear cells

PC

Phosphatidylcholine

PGC-1α

Peroxisome proliferator-activated receptor-gamma coactivator

PKC-δ

Protein kinase C delta type

PQQ

Pyrroloquinoline quinone

PRR

Pathogen recognition receptor

RLR

Retinoic acid-inducible gene (RIG-1)-like receptors

ROS

Reactive oxygen species

siRNA

Small interfering RNA

TCR

T-cell receptor

TFAM

Mitochondrial transcription factor A

Th2

Type 2 T helper cells

TLR

Toll-like receptor

TNF-α

Tumour necrosis factor alpha

TRPV1

Transient receptor potential cation channel subfamily V member 1

UQCRC2

Ubiquinol-cytochrome c reductase core protein II

References

  1. 1.
    Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD (2015) Asthma. Nat Rev Dis Prim 1:15025.  https://doi.org/10.1038/nrdp.2015.25CrossRefPubMedGoogle Scholar
  2. 2.
    Wenzel SE (2012) Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18:716–725.  https://doi.org/10.1038/nm.2678CrossRefPubMedGoogle Scholar
  3. 3.
    Mabalirajan U, Ghosh B (2013) Mitochondrial dysfunction in metabolic syndrome and asthma. J Allergy 2013:1–12.  https://doi.org/10.1155/2013/340476CrossRefGoogle Scholar
  4. 4.
    Bhatraju NK, Agrawal A (2017) Mitochondrial dysfunction linking obesity and asthma. Ann Am Thorac Soc 14:S368–S373.  https://doi.org/10.1513/AnnalsATS.201701-042AWCrossRefPubMedGoogle Scholar
  5. 5.
    Iyer D, Mishra N, Agrawal A (2017) Mitochondrial function in allergic disease. Curr Allergy Asthma Rep 17:29.  https://doi.org/10.1007/s11882-017-0695-0CrossRefPubMedGoogle Scholar
  6. 6.
    Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159.  https://doi.org/10.1016/j.cell.2012.02.035CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    López-Armada MJ, Riveiro-Naveira RR, Vaamonde-García C, Valcárcel-Ares MN (2013) Mitochondrial dysfunction and the inflammatory response. Mitochondrion 13:106–118.  https://doi.org/10.1016/j.mito.2013.01.003CrossRefPubMedGoogle Scholar
  8. 8.
    Sorrentino V, Menzies KJ, Auwerx J (2018) Repairing mitochondrial dysfunction in disease. Annu Rev Pharmacol Toxicol 58:353–389.  https://doi.org/10.1146/annurev-pharmtox-010716-104908CrossRefPubMedGoogle Scholar
  9. 9.
    Agrawal A, Mabalirajan U, Ahmad T, Ghosh B (2011) Emerging interface between metabolic syndrome and asthma. Am J Respir Cell Mol Biol 44:270–275.  https://doi.org/10.1165/rcmb.2010-0141TRCrossRefPubMedGoogle Scholar
  10. 10.
    Mukherjee AB, Zhang Z (2011) Allergic asthma: influence of genetic and environmental factors. J Biol Chem 286:32883–32889. R110.197046 [pii]10.1074/jbc.R110.197046CrossRefGoogle Scholar
  11. 11.
    Minnicozzi M, Sawyer RT, Fenton MJ (2011) Innate immunity in allergic disease. Immunol Rev 242:106–127.  https://doi.org/10.1111/j.1600-065X.2011.01025.xCrossRefPubMedGoogle Scholar
  12. 12.
    Kay AB, Kaplan AP, Bousquet J, Holt PG (2008) Allergy and allergic diseases. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  13. 13.
    Kraneveld AD, van der Kleij HPM, Kool M, van Houwelingen AH, Weitenberg ACD, Redegeld FAM, Nijkamp FP (2002) Key role for mast cells in nonatopic asthma. J Immunol 169:2044–2053CrossRefGoogle Scholar
  14. 14.
    Archibald JM (2015) Endosymbiosis and eukaryotic cell evolution. Curr Biol 25:R911–R921.  https://doi.org/10.1016/j.cub.2015.07.055CrossRefPubMedGoogle Scholar
  15. 15.
    Lill R, Hoffmann B, Molik S, Pierik AJ, Rietzschel N, Stehling O, Uzarska MA, Webert H, Wilbrecht C, Mühlenhoff U (2012) The role of mitochondria in cellular iron–sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta, Mol Cell Res 1823:1491–1508.  https://doi.org/10.1016/J.BBAMCR.2012.05.009CrossRefPubMedGoogle Scholar
  16. 16.
    Chandel NS (2014) Mitochondria as signaling organelles. BMC Biol 12:34.  https://doi.org/10.1186/1741-7007-12-34CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35:505–513.  https://doi.org/10.1016/j.tibs.2010.04.002CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Yun J, Finkel T (2014) Mitohormesis. Cell Metab 19:757–766.  https://doi.org/10.1016/j.cmet.2014.01.011CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312.  https://doi.org/10.1126/SCIENCE.281.5381.1309CrossRefPubMedGoogle Scholar
  20. 20.
    Youle RJ, Narendra DP (2011) Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12:9–14.  https://doi.org/10.1038/nrm3028CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Archer SL (2013) Mitochondrial dynamics – mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251.  https://doi.org/10.1056/NEJMra1215233CrossRefPubMedGoogle Scholar
  22. 22.
    Jovaisaite V, Auwerx J (2015) The mitochondrial unfolded protein response – synchronizing genomes. Curr Opin Cell Biol 33:74–81.  https://doi.org/10.1016/j.ceb.2014.12.003CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K, Hauser CJ (2010) Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–107.  https://doi.org/10.1038/nature08780CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kouzaki H, Iijima K, Kobayashi T, O’Grady SM, Kita H (2011) The danger signal, extracellular ATP, is a sensor for an airborne allergen and triggers IL-33 release and innate Th2-type responses. J Immunol 186:4375–4387.  https://doi.org/10.4049/jimmunol.1003020CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chakraborty K, Raundhal M, Chen BB, Morse C, Tyurina YY, Khare A, Oriss TB, Huff R, Lee JS, St Croix CM, Watkins S, Mallampalli RK, Kagan VE, Ray A, Ray P (2017) The mito-DAMP cardiolipin blocks IL-10 production causing persistent inflammation during bacterial pneumonia. Nat Commun 8:13944.  https://doi.org/10.1038/ncomms13944CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Raby BA, Klanderman B, Murphy A, Mazza S, Camargo CA, Silverman EK, Weiss ST (2007) A common mitochondrial haplogroup is associated with elevated total serum IgE levels. J Allergy Clin Immunol 120:351–358.  https://doi.org/10.1016/j.jaci.2007.05.029CrossRefPubMedGoogle Scholar
  27. 27.
    Zifa E, Daniil Z, Skoumi E, Stavrou M, Papadimitriou K, Terzenidou M, Kostikas K, Bagiatis V, Gourgoulianis KI, Mamuris Z (2012) Mitochondrial genetic background plays a role in increasing risk to asthma. Mol Biol Rep 39:4697–4708.  https://doi.org/10.1007/s11033-011-1262-8CrossRefPubMedGoogle Scholar
  28. 28.
    Schauberger EM, Ewart SL, Arshad SH, Huebner M, Karmaus W, Holloway JW, Friderici KH, Ziegler JT, Zhang H, Rose-Zerilli MJ, Barton SJ, Holgate ST, Kilpatrick JR, Harley JB, Lajoie-Kadoch S, Harley ITW, Hamid Q, Kurukulaaratchy RJ, Seibold MA, Avila PC, Rodriguez-Cintrón W, Rodriguez-Santana JR, Hu D, Gignoux C, Romieu I, London SJ, Burchard EG, Langefeld CD, Wills-Karp M (2011) Identification of ATPAF1 as a novel candidate gene for asthma in children. J Allergy Clin Immunol 128:753–760.e11.  https://doi.org/10.1016/j.jaci.2011.04.058CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Konrádová V, Copová C, Suková B, Houstĕk J (1985) Ultrastructure of the bronchial epithelium in three children with asthma. Pediatr Pulmonol 1:182–187CrossRefGoogle Scholar
  30. 30.
    Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK, Ghosh B (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181:3540–3548CrossRefGoogle Scholar
  31. 31.
    Aguilera-Aguirre L, Bacsi A, Saavedra-Molina A, Kurosky A, Sur S, Boldogh I (2009) Mitochondrial dysfunction increases allergic airway inflammation. J Immunol 183:5379–5387.  https://doi.org/10.4049/jimmunol.0900228CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lambrecht BN, Hammad H (2012) The airway epithelium in asthma. Nat Med 18:684–692.  https://doi.org/10.1038/nm.2737CrossRefPubMedGoogle Scholar
  33. 33.
    Sebag SC, Koval OM, Paschke JD, Winters CJ, Comellas AP, Grumbach IM (2018) Inhibition of the mitochondrial calcium uniporter prevents IL-13 and allergen-mediated airway epithelial apoptosis and loss of barrier function. Exp Cell Res 362:400–411.  https://doi.org/10.1016/j.yexcr.2017.12.003CrossRefPubMedGoogle Scholar
  34. 34.
    Yang L, Na C-L, Luo S, Wu D, Hogan S, Huang T, Weaver TE (2017) The phosphatidylcholine transfer protein Stard7 is required for mitochondrial and epithelial cell homeostasis. Sci Rep 7:46416.  https://doi.org/10.1038/srep46416CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kim SR, Kim DI, Kim SH, Lee H, Lee KS, Cho SH, Lee YC (2014) NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5:e1498.  https://doi.org/10.1038/cddis.2014.460CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243:136–151.  https://doi.org/10.1111/j.1600-065X.2011.01046.xCrossRefPubMedGoogle Scholar
  37. 37.
    Kepp O, Galluzzi L, Kroemer G (2011) Mitochondrial control of the NLRP3 inflammasome. Nat Immunol 12:199–200.  https://doi.org/10.1038/ni0311-199CrossRefPubMedGoogle Scholar
  38. 38.
    Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225.  https://doi.org/10.1038/nature09663CrossRefGoogle Scholar
  39. 39.
    Sebag SC, Koval OM, Paschke JD, Winters CJ, Jaffer OA, Dworski R, Sutterwala FS, Anderson ME, Grumbach IM (2017) Mitochondrial CaMKII inhibition in airway epithelium protects against allergic asthma. JCI Insight 2:e88297.  https://doi.org/10.1172/jci.insight.88297CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Chodaczek G, Bacsi A, Dharajiya N, Sur S, Hazra TK, Boldogh I (2009) Ragweed pollen-mediated IgE-independent release of biogenic amines from mast cells via induction of mitochondrial dysfunction. Mol Immunol 46:2505–2514.  https://doi.org/10.1016/j.molimm.2009.05.023CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cahoon J, Anathy V (2015) Endoplasmic reticulum – mitochondrial interactions in house dust mite induced inflammation. UVM College of Arts and Sciences College Honors ThesesGoogle Scholar
  42. 42.
    Syyong HT, Pascoe CD, Zhang J, Arsenault BA, Solomon D, Elliott WM, Hackett TL, Walker DC, Paré PD, Seow CY (2015) Ultrastructure of human tracheal smooth muscle from subjects with asthma and nonasthmatic subjects. Standardized methods for comparison. Am J Respir Cell Mol Biol 52:304–314.  https://doi.org/10.1165/rcmb.2014-0176OCCrossRefPubMedGoogle Scholar
  43. 43.
    Delmotte P, Yang B, Thompson MA, Pabelick CM, Prakash YS, Sieck GC (2012) Inflammation alters regional mitochondrial Ca2+ in human airway smooth muscle cells. Am J Phys Cell Physiol 303:C244–C256.  https://doi.org/10.1152/ajpcell.00414.2011CrossRefGoogle Scholar
  44. 44.
    Beuther DA (2010) Recent insight into obesity and asthma. Curr Opin Pulm Med 16:64–70.  https://doi.org/10.1097/MCP.0b013e3283338fa7CrossRefPubMedGoogle Scholar
  45. 45.
    Farzan S (2013) The asthma phenotype in the obese: distinct or otherwise? J Allergy 2013:602908.  https://doi.org/10.1155/2013/602908CrossRefGoogle Scholar
  46. 46.
    Appleton SL, Adams RJ, Wilson DH, Taylor AW, Ruffin RE, North West Adelaide Health Study T (2006) Central obesity is associated with nonatopic but not atopic asthma in a representative population sample. J Allergy Clin Immunol 118:1284–1291.  https://doi.org/10.1016/j.jaci.2006.08.011CrossRefPubMedGoogle Scholar
  47. 47.
    Wasir JS, Misra A, Vikram NK, Pandey RM, Gupta R (2008) Comparison of definitions of the metabolic syndrome in adult Asian Indians. J Assoc Physicians India 56:158–164PubMedGoogle Scholar
  48. 48.
    Brisbon N, Plumb J, Brawer R, Paxman D (2005) The asthma and obesity epidemics: the role played by the built environment – a public health perspective. J Allergy Clin Immunol 115:1024–1028.  https://doi.org/10.1016/j.jaci.2005.02.020CrossRefPubMedGoogle Scholar
  49. 49.
    Kent BD, Lane SJ (2012) Twin epidemics: asthma and obesity. Int Arch Allergy Immunol 157:213–214.  https://doi.org/10.1159/000329874CrossRefPubMedGoogle Scholar
  50. 50.
    Lee EJ, In KH, Ha ES, Lee KJ, Hur GY, Kang EH, Jung KH, Lee SY, Kim JH, Lee SY, Shin C, Shim JJ, Kang KH, Yoo SH (2009) Asthma-like symptoms are increased in the metabolic syndrome. J Asthma 46:339–342.  https://doi.org/10.1080/02770900802660931CrossRefPubMedGoogle Scholar
  51. 51.
    Park S, Choi NK, Kim S, Lee CH (2018) The relationship between metabolic syndrome and asthma in the elderly. Sci Rep 8:9378.  https://doi.org/10.1038/s41598-018-26621-zCrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Shore SA (2007) Obesity and asthma: lessons from animal models. J Appl Physiol 102:516–528.  https://doi.org/10.1152/japplphysiol.00847.2006CrossRefPubMedGoogle Scholar
  53. 53.
    Shore SA (2010) Obesity, airway hyperresponsiveness, and inflammation. J Appl Physiol 108:735–743.  https://doi.org/10.1152/japplphysiol.00749.2009CrossRefPubMedGoogle Scholar
  54. 54.
    Campbell CD, Mohajeri K, Malig M, Hormozdiari F, Nelson B, Du G, Patterson KM, Eng C, Torgerson DG, Hu D, Herman C, Chong JX, Ko A, O’Roak BJ, Krumm N, Vives L, Lee C, Roth LA, Rodriguez-Cintron W, Rodriguez-Santana J, Brigino-Buenaventura E, Davis A, Meade K, LeNoir MA, Thyne S, Jackson DJ, Gern JE, Lemanske RF Jr, Shendure J, Abney M, Burchard EG, Ober C, Eichler EE (2014) Whole-genome sequencing of individuals from a founder population identifies candidate genes for asthma. PLoS One 9:e104396.  https://doi.org/10.1371/journal.pone.0104396CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Anderson GG, Cookson WO (1999) Recent advances in the genetics of allergy and asthma. Mol Med Today 5:264–273CrossRefGoogle Scholar
  56. 56.
    Koppelman GH, Stine OC, Xu J, Howard TD, Zheng SL, Kauffman HF, Bleecker ER, Meyers DA, Postma DS (2002) Genome-wide search for atopy susceptibility genes in Dutch families with asthma. J Allergy Clin Immunol 109:498–506CrossRefGoogle Scholar
  57. 57.
    Aral C, Akkiprik M, Caglayan S, Atabey Z, Ozişik G, Bekiroglu N, Ozer A (2011) Investigation of relationship of the mitochondrial DNA 16189 T>C polymorphism with metabolic syndrome and its associated clinical parameters in Turkish patients. Hormones (Athens) 10:298–303CrossRefGoogle Scholar
  58. 58.
    S-HH J, Lu M-Y, Bai R-K, Liao Y-C, Trieu RB, Yu M-L, Wong L-JC (2010) A common mitochondrial polymorphism 10398A>G is associated metabolic syndrome in a Chinese population. Mitochondrion 10:294–299.  https://doi.org/10.1016/j.mito.2010.01.001CrossRefGoogle Scholar
  59. 59.
    Nunemaker CS, Chen M, Pei H, Kimble SD, Keller SR, Carter JD, Yang Z, Smith KM, Wu R, Bevard MH, Garmey JC, Nadler JL (2008) 12-Lipoxygenase-knockout mice are resistant to inflammatory effects of obesity induced by Western diet. Am J Physiol Endocrinol Metab 295:E1065–E1075.  https://doi.org/10.1152/ajpendo.90371.2008CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Sears DD, Miles PD, Chapman J, Ofrecio JM, Almazan F, Thapar D, Miller YI (2009) 12/15-lipoxygenase is required for the early onset of high fat diet-induced adipose tissue inflammation and insulin resistance in mice. PLoS One 4:e7250.  https://doi.org/10.1371/journal.pone.0007250CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Cole BK, Kuhn NS, Green-Mitchell SM, Leone KA, Raab RM, Nadler JL, Chakrabarti SK (2012) 12/15-Lipoxygenase signaling in the endoplasmic reticulum stress response. Am J Physiol Endocrinol Metab 302:E654–E665.  https://doi.org/10.1152/ajpendo.00373.2011CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Cole BK, Morris MA, Grzesik WJ, Leone KA, Nadler JL (2012) Adipose tissue-specific deletion of 12/15-lipoxygenase protects mice from the consequences of a high-fat diet. Mediat Inflamm 2012:851798.  https://doi.org/10.1155/2012/851798CrossRefGoogle Scholar
  63. 63.
    Mabalirajan U, Rehman R, Ahmad T, Kumar S, Singh S, Leishangthem GD, Aich J, Kumar M, Khanna K, Singh VP, Dinda AK, Biswal S, Agrawal A, Ghosh B (2013) Linoleic acid metabolite drives severe asthma by causing airway epithelial injury. Sci Rep 3:1349.  https://doi.org/10.1038/srep01349CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Nisoli E, Clementi E, Carruba MO, Moncada S (2007) Defective mitochondrial biogenesis. Circ Res 100:795–806.  https://doi.org/10.1161/01.RES.0000259591.97107.6cCrossRefPubMedGoogle Scholar
  65. 65.
    Holguin F, Fitzpatrick A (2010) Obesity, asthma, and oxidative stress. J Appl Physiol 108:754–759.  https://doi.org/10.1152/japplphysiol.00702.2009.—ObesityCrossRefPubMedGoogle Scholar
  66. 66.
    Carlstrom M, Larsen FJ, Nystrom T, Hezel M, Borniquel S, Weitzberg E, Lundberg JO (2010) Dietary inorganic nitrate reverses features of metabolic syndrome in endothelial nitric oxide synthase-deficient mice. Proc Natl Acad Sci U S A 107:17716–17720.  https://doi.org/10.1073/pnas.1008872107CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mabalirajan U, Ahmad T, Leishangthem GD, Joseph DA, Dinda AK, Agrawal A, Ghosh B (2010) Beneficial effects of high dose of L-arginine on airway hyperresponsiveness and airway inflammation in a murine model of asthma. J Allergy Clin Immunol 125:626–635.  https://doi.org/10.1016/j.jaci.2009.10.065CrossRefPubMedGoogle Scholar
  68. 68.
    Monti LD, Casiraghi MC, Setola E, Galluccio E, Pagani MA, Quaglia L, Bosi E, Piatti P (2013) L-arginine enriched biscuits improve endothelial function and glucose metabolism: a pilot study in healthy subjects and a cross-over study in subjects with impaired glucose tolerance and metabolic syndrome. Metabolism 62:255–264.  https://doi.org/10.1016/j.metabol.2012.08.004CrossRefPubMedGoogle Scholar
  69. 69.
    Singh S, Bodas M, Bhatraju NK, Pattnaik B, Gheware A, Parameswaran PK, Thompson M, Freeman M, Mabalirajan U, Gosens R, Ghosh B, Pabelick C, Linneberg A, Prakash YS, Agrawal A (2016) Hyperinsulinemia adversely affects lung structure and function. Am J Phys Lung Cell Mol Phys 310:L837–L845.  https://doi.org/10.1152/ajplung.00091.2015CrossRefGoogle Scholar
  70. 70.
    Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin M-J, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat Commun 4:2192.  https://doi.org/10.1038/ncomms3192CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Calixto MC, Lintomen L, André DM, Leiria LO, Ferreira D, Lellis-Santos C, Anhê GF, Bordin S, Landgraf RG, Antunes E (2013) Metformin attenuates the exacerbation of the allergic eosinophilic inflammation in high fat-diet-induced obesity in mice. PLoS One 8:e76786.  https://doi.org/10.1371/journal.pone.0076786CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Xu W, Ghosh S, Comhair SAA, Asosingh K, Janocha AJ, Mavrakis DA, Bennett CD, Gruca LL, Graham BB, Queisser KA, Kao CC, Wedes SH, Petrich JM, Tuder RM, Kalhan SC, Erzurum SC (2016) Increased mitochondrial arginine metabolism supports bioenergetics in asthma. J Clin Invest 126:2465–2481.  https://doi.org/10.1172/JCI82925CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Mabalirajan U, Ahmad T, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B (2010) L-arginine reduces mitochondrial dysfunction and airway injury in murine allergic airway inflammation. Int Immunopharmacol 10:1514–1519.  https://doi.org/10.1016/j.intimp.2010.08.025CrossRefPubMedGoogle Scholar
  74. 74.
    Mabalirajan U, Ahmad T, Rehman R, Leishangthem GD, Dinda AK, Agrawal A, Ghosh B, Sharma SK (2013) Baicalein reduces airway injury in allergen and IL-13 induced airway inflammation. PLoS One 8:e62916.  https://doi.org/10.1371/journal.pone.0062916CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mabalirajan U, Dinda AK, Sharma SK, Ghosh B (2009) Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. J Immunol 183:2059–2067.  https://doi.org/10.4049/jimmunol.0900342CrossRefPubMedGoogle Scholar
  76. 76.
    Aich J, Mabalirajan U, Ahmad T, Khanna K, Rehman R, Agrawal A, Ghosh B (2012) Resveratrol attenuates experimental allergic asthma in mice by restoring inositol polyphosphate 4 phosphatase (INPP4A). Int Immunopharmacol 14:438–443.  https://doi.org/10.1016/j.intimp.2012.08.017CrossRefPubMedGoogle Scholar
  77. 77.
    Bajpai P, Darra A, Agrawal A (2018) Microbe-mitochondrion crosstalk and health: an emerging paradigm. Mitochondrion 39:20–25.  https://doi.org/10.1016/j.mito.2017.08.008CrossRefPubMedGoogle Scholar
  78. 78.
    Chowanadisai W, Bauerly KA, Tchaparian E, Wong A, Cortopassi GA, Rucker RB (2010) Pyrroloquinoline quinone stimulates mitochondrial biogenesis through cAMP response element-binding protein phosphorylation and increased PGC-1alpha expression. J Biol Chem 285:142–152.  https://doi.org/10.1074/jbc.M109.030130CrossRefPubMedGoogle Scholar
  79. 79.
    Rucker R, Chowanadisai W, Nakano M (2009) Potential physiological importance of pyrroloquinoline quinone. Altern Med Rev 14:268–277PubMedGoogle Scholar
  80. 80.
    Reddy PH (2011) Mitochondrial dysfunction and oxidative stress in asthma: implications for mitochondria-targeted antioxidant therapeutics. Pharmaceuticals (Basel) 4:429–456.  https://doi.org/10.3390/ph4030429CrossRefGoogle Scholar
  81. 81.
    Gvozdjáková A, Kucharská J, Bartkovjaková M, Gazdíková K, Gazdík FE (2005) Coenzyme Q10 supplementation reduces corticosteroids dosage in patients with bronchial asthma. Biofactors 25:235–240CrossRefGoogle Scholar
  82. 82.
    Agrawal A, Mabalirajan U (2016) Rejuvenating cellular respiration for optimizing respiratory function: targeting mitochondria. Am J Physiol Cell Mol Physiol 310:L103–L113.  https://doi.org/10.1152/ajplung.00320.2015CrossRefGoogle Scholar
  83. 83.
    Zhu Y-G, Hao Q, Monsel A, Feng X-M, Lee J-W (2013) Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 18:744–756.  https://doi.org/10.1111/resp.12093CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Ahmad T, Mukherjee S, Pattnaik B, Kumar M, Singh S, Kumar M, Rehman R, Tiwari BK, Jha KA, Barhanpurkar AP, Wani MR, Roy SS, Mabalirajan U, Ghosh B, Agrawal A (2014) Miro1 regulates intercellular mitochondrial transport & enhances mesenchymal stem cell rescue efficacy. EMBO J 33:994–1010.  https://doi.org/10.1002/embj.201386030CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Samarpana Chakraborty
    • 1
  • Kritika Khanna
    • 1
  • Anurag Agrawal
    • 1
    • 2
    • 3
    Email author
  1. 1.CSIR Institute of Genomics and Integrative BiologyDelhiIndia
  2. 2.Academy of Scientific and Innovative ResearchDelhiIndia
  3. 3.Baylor College of MedicineHoustonUSA

Personalised recommendations