Advertisement

Oxidative Stress Mechanisms in the Pathogenesis of Environmental Lung Diseases

  • Rajesh K. ThimmulappaEmail author
  • Indranil Chattopadhyay
  • Subbiah Rajasekaran
Chapter

Abstract

Globally, respiratory diseases are major cause of disability and mortality, and more alarmingly, it disproportionately affects developing countries, which is largely attributed to poor quality of air. Tobacco smoke and emissions from combustion of fossil fuel and biomass fuel are the major airborne pollutants affecting human lung health. Oxidative stress is the dominant driving force by which the airborne pollutants exert their toxicity in lungs and cause respiratory diseases. Most airborne pollutants are associated with intrinsic oxidative potential and, additionally, stimulate endogenous production of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Elevated ROS and RNS in lungs modulate redox signals and cause irreversible damage to critical biomolecules (lipids, proteins and DNA) and initiate various pathogenic cellular process. This chapter provides an insight into oxidative stress-linked pathogenic cellular process such as lipid peroxidation, inflammation, cell death, mitochondrial dysfunction, endoplasmic reticulum stress, epigenetic changes, profibrotic signals and mucus hypersecretion, which drive the development and progression of lung diseases. Lungs are associated with robust enzymatic and non-enzymatic (GSH, ascorbic acid, uric acid, vitamin E) antioxidant defences. However, sustained production of free radicals due to continuous exposures to airborne pollutants overwhelms lung antioxidant defences and causes oxidative injury. Preclinical studies have demonstrated the critical roles and therapeutic potential of upregulating lung antioxidants for intervention of respiratory diseases; however, so far clinical benefits in antioxidant supplementation trials have been minimal and conflicting. Antioxidants alone may not be effective in treatment of respiratory diseases; however it could be a promising adjunctive therapy.

Keywords

Respiratory diseases Oxidative stress Lipid peroxidation Inflammation Cell death Mitochondrial dysfunction Endoplasmic reticulum stress Epigenetic changes Profibrotic signals Mucus hypersecretion Lung antioxidants 

Notes

Acknowledgements

This work was supported by Ramalingaswami Re-Entry Fellowship grant from the Department of Biotechnology, Ministry of Science and Technology, India to R.K.T and S.R.

References

  1. 1.
    Collaborators GCoD (2018) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159):1736–1788CrossRefGoogle Scholar
  2. 2.
    Collaborators GDaH (2018) Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159):1859–1922CrossRefGoogle Scholar
  3. 3.
    Ferkol T, Schraufnagel D (2014) The global burden of respiratory disease. Ann Am Thorac Soc 11(3):404–406PubMedCrossRefGoogle Scholar
  4. 4.
    Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–95PubMedCrossRefGoogle Scholar
  5. 5.
    Halliwell B (1994) Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344(8924):721–724PubMedCrossRefGoogle Scholar
  6. 6.
    Cantu-Medellin N, Kelley EE (2013) Xanthine oxidoreductase-catalyzed reactive species generation: a process in critical need of reevaluation. Redox Biol 1:353–358PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Antosova M, Mokra D, Pepucha L, Plevkova J, Buday T, Sterusky M et al (2017) Physiology of nitric oxide in the respiratory system. Physiol Res 66(Suppl 2):S159–SS72PubMedGoogle Scholar
  8. 8.
    Bernard K, Hecker L, Luckhardt TR, Cheng G, Thannickal VJ (2014) NADPH oxidases in lung health and disease. Antioxid Redox Signal 20(17):2838–2853PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ et al (2011) Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51(7):1271–1288PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87(1):245–313CrossRefGoogle Scholar
  11. 11.
    Winterbourn CC, Kettle AJ, Hampton MB (2016) Reactive oxygen species and neutrophil function. Annu Rev Biochem 85:765–792PubMedCrossRefGoogle Scholar
  12. 12.
    Beers MF, Morrisey EE (2011) The three R's of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 121(6):2065–2073PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Cloonan SM, Choi AM (2016) Mitochondria in lung disease. J Clin Invest 126(3):809–820PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Thannickal VJ (2012) Mechanisms of pulmonary fibrosis: role of activated myofibroblasts and NADPH oxidase. Fibrogenesis Tissue Repair 5(Suppl 1):S23PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kelley EE, Khoo NK, Hundley NJ, Malik UZ, Freeman BA, Tarpey MM (2010) Hydrogen peroxide is the major oxidant product of xanthine oxidase. Free Radic Biol Med 48(4):493–498PubMedCrossRefGoogle Scholar
  16. 16.
    Hesslinger C, Strub A, Boer R, Ulrich WR, Lehner MD, Braun C (2009) Inhibition of inducible nitric oxide synthase in respiratory diseases. Biochem Soc Trans 37(Pt 4):886–891PubMedCrossRefGoogle Scholar
  17. 17.
    Sugiura H, Ichinose M (2011) Nitrative stress in inflammatory lung diseases. Nitric Oxide 25(2):138–144PubMedCrossRefGoogle Scholar
  18. 18.
    Ghio AJ, Soukup JM, Madden MC (2018) The toxicology of air pollution predicts its epidemiology. Inhal Toxicol:1–8Google Scholar
  19. 19.
    Feld-Cook EE, Bovenkamp-Langlois L, Lomnicki SM (2017) Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation. Environ Sci Technol 51(18):10396–10402PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Pryor WA (1992) Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance. Free Radic Biol Med 13(6):659–676PubMedCrossRefGoogle Scholar
  21. 21.
    Nel A (2005) Atmosphere. Air pollution-related illness: effects of particles. Science 308(5723):804–806PubMedCrossRefGoogle Scholar
  22. 22.
    Hogg JC, Hackett TL (2018) Structure and function relationships in diseases of the small airways. Ann Am Thorac Soc 15(Supplement_1):S18–S25PubMedCrossRefGoogle Scholar
  23. 23.
    Pinkerton KE, Green FH, Saiki C, Vallyathan V, Plopper CG, Gopal V et al (2000) Distribution of particulate matter and tissue remodeling in the human lung. Environ Health Perspect 108(11):1063–1069PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rostami AA (2009) Computational modeling of aerosol deposition in respiratory tract: a review. Inhal Toxicol 21(4):262–290PubMedCrossRefGoogle Scholar
  25. 25.
    Roper C, Chubb LG, Cambal L, Tunno B, Clougherty JE, Mischler SE (2015) Characterization of ambient and extracted PM2.5 collected on filters for toxicology applications. Inhal Toxicol 27(13):673–681PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Song Y, Buettner GR (2010) Thermodynamic and kinetic considerations for the reaction of semiquinone radicals to form superoxide and hydrogen peroxide. Free Radic Biol Med 49(6):919–962PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pryor WA, Prier DG, Church DF (1983) Electron-spin resonance study of mainstream and sidestream cigarette smoke: nature of the free radicals in gas-phase smoke and in cigarette tar. Environ Health Perspect 47:345–355PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Michaudel C, Fauconnier L, Julé Y, Ryffel B (2018) Functional and morphological differences of the lung upon acute and chronic ozone exposure in mice. Sci Rep 8(1):10611PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hogg JC, Timens W (2009) The pathology of chronic obstructive pulmonary disease. Annu Rev Pathol 4:435–459CrossRefGoogle Scholar
  31. 31.
    Hogg JC, Pare PD, Hackett TL (2017) The contribution of small airway obstruction to the pathogenesis of chronic obstructive pulmonary disease. Physiol Rev 97(2):529–552PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hecker L (2018) Mechanisms and consequences of oxidative stress in lung disease: therapeutic implications for an aging populace. Am J Physiol Lung Cell Mol Physiol 314(4):L642–LL53PubMedCrossRefGoogle Scholar
  33. 33.
    Young RP, Hopkins R, Black PN, Eddy C, Wu L, Gamble GD et al (2006) Functional variants of antioxidant genes in smokers with COPD and in those with normal lung function. Thorax 61(5):394–399PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Celedón JC, Lange C, Raby BA, Litonjua AA, Palmer LJ, DeMeo DL et al (2004) The transforming growth factor-beta1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum Mol Genet 13(15):1649–1656PubMedCrossRefGoogle Scholar
  35. 35.
    Küçükaycan M, Van Krugten M, Pennings HJ, Huizinga TW, Buurman WA, Dentener MA et al (2002) Tumor necrosis factor-alpha +489G/a gene polymorphism is associated with chronic obstructive pulmonary disease. Respir Res 3:29PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Keatings VM, Cave SJ, Henry MJ, Morgan K, O'Connor CM, FitzGerald MX et al (2000) A polymorphism in the tumor necrosis factor-alpha gene promoter region may predispose to a poor prognosis in COPD. Chest 118(4):971–975PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Sandford AJ, Paré PD (2000) Genetic risk factors for chronic obstructive pulmonary disease. Clin Chest Med 21(4):633–643PubMedCrossRefGoogle Scholar
  38. 38.
    Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA et al (2015) Chronic obstructive pulmonary disease. Nat Rev Dis Primers 1:15076CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Tuder RM, Petrache I (2012) Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 122(8):2749–2755PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yoshida T, Tuder RM (2007) Pathobiology of cigarette smoke-induced chronic obstructive pulmonary disease. Physiol Rev 87(3):1047–1082PubMedCrossRefGoogle Scholar
  41. 41.
    Rangasamy T, Cho CY, Thimmulappa RK, Zhen L, Srisuma SS, Kensler TW et al (2004) Genetic ablation of Nrf2 enhances susceptibility to cigarette smoke-induced emphysema in mice. J Clin Invest 114(9):1248–1259PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Singh A, Rangasamy T, Thimmulappa RK, Lee H, Osburn WO, Brigelius-Flohé R et al (2006) Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol 35(6):639–650PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Thimmulappa RK, Gang X, Kim JH, Sussan TE, Witztum JL, Biswal S (2012) Oxidized phospholipids impair pulmonary antibacterial defenses: evidence in mice exposed to cigarette smoke. Biochem Biophys Res Commun 426(2):253–259PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Yoshida T, Mett I, Bhunia AK, Bowman J, Perez M, Zhang L et al (2010) Rtp801, a suppressor of mTOR signaling, is an essential mediator of cigarette smoke-induced pulmonary injury and emphysema. Nat Med 16(7):767–773PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kirkham PA, Barnes PJ (2013) Oxidative stress in COPD. Chest 144(1):266–273PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Russell RJ, Brightling C (2017) Pathogenesis of asthma: implications for precision medicine. Clin Sci (Lond) 131(14):1723–1735CrossRefGoogle Scholar
  47. 47.
    Barnes PJ (2018) Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 18(7):454–466PubMedCrossRefGoogle Scholar
  48. 48.
    Comhair SA, Erzurum SC (2010) Redox control of asthma: molecular mechanisms and therapeutic opportunities. Antioxid Redox Signal 12(1):93–124PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342(18):1334–1349CrossRefGoogle Scholar
  50. 50.
    Rajasekaran S, Pattarayan D, Rajaguru P, Sudhakar Gandhi PS, Thimmulappa RK (2016) MicroRNA regulation of acute lung injury and acute respiratory distress syndrome. J Cell Physiol 231(10):2097–2106PubMedCrossRefGoogle Scholar
  51. 51.
    Tsushima K, King LS, Aggarwal NR, De Gorordo A, D'Alessio FR, Kubo K (2009) Acute lung injury review. Intern Med 48(9):621–630PubMedCrossRefGoogle Scholar
  52. 52.
    Quinlan GJ, Lamb NJ, Tilley R, Evans TW, Gutteridge JM (1997) Plasma hypoxanthine levels in ARDS: implications for oxidative stress, morbidity, and mortality. Am J Respir Crit Care Med 155(2):479–484PubMedCrossRefGoogle Scholar
  53. 53.
    Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM (2017) ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv Exp Med Biol 967:105–137PubMedCrossRefGoogle Scholar
  54. 54.
    Martinez FJ, Collard HR, Pardo A, Raghu G, Richeldi L, Selman M et al (2017) Idiopathic pulmonary fibrosis. Nat Rev Dis Primers 3:17074CrossRefGoogle Scholar
  55. 55.
    Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T et al (2014) Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 6(231):231ra47PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Ciencewicki J, Trivedi S, Kleeberger SR (2008) Oxidants and the pathogenesis of lung diseases. J Allergy Clin Immunol 122(3):456–468. quiz 69-70PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fruhwirth GO, Loidl A, Hermetter A (2007) Oxidized phospholipids: from molecular properties to disease. Biochim Biophys Acta 1772(7):718–736PubMedCrossRefGoogle Scholar
  58. 58.
    Freigang S (2016) The regulation of inflammation by oxidized phospholipids. Eur J Immunol 46(8):1818–1825PubMedCrossRefGoogle Scholar
  59. 59.
    Awasthi YC, Sharma R, Cheng JZ, Yang Y, Sharma A, Singhal SS et al (2003) Role of 4-hydroxynonenal in stress-mediated apoptosis signaling. Mol Aspects Med 24(4–5):219–230PubMedCrossRefGoogle Scholar
  60. 60.
    Breitzig M, Bhimineni C, Lockey R, Kolliputi N (2016) 4-Hydroxy-2-nonenal: a critical target in oxidative stress? Am J Physiol Cell Physiol 311(4):C537–CC43PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13(1):81–90PubMedCrossRefGoogle Scholar
  62. 62.
    Karki P, Meliton A, Shah A, Tian Y, Ohmura T, Sarich N et al (2018) Role of truncated oxidized phospholipids in acute endothelial barrier dysfunction caused by particulate matter. PLoS One 13(11):e0206251PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Imai Y, Kuba K, Neely GG, Yaghubian-Malhami R, Perkmann T, van Loo G et al (2008) Identification of oxidative stress and toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133(2):235–249PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Romero F, Shah D, Duong M, Penn RB, Fessler MB, Madenspacher J et al (2015) A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis. Am J Respir Cell Mol Biol 53(1):74–86PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Almstrand AC, Voelker D, Murphy RC (2015) Identification of oxidized phospholipids in bronchoalveolar lavage exposed to low ozone levels using multivariate analysis. Anal Biochem 474:50–58PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Lenz AG, Jorens PG, Meyer B, De Backer W, Van Overveld F, Bossaert L et al (1999) Oxidatively modified proteins in bronchoalveolar lavage fluid of patients with ARDS and patients at-risk for ARDS. Eur Respir J 13(1):169–174PubMedCrossRefGoogle Scholar
  67. 67.
    Rahman I, van Schadewijk AA, Crowther AJ, Hiemstra PS, Stolk J, MacNee W et al (2002) 4-Hydroxy-2-nonenal, a specific lipid peroxidation product, is elevated in lungs of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 166(4):490–495PubMedCrossRefGoogle Scholar
  68. 68.
    Paliogiannis P, Fois AG, Collu C, Bandinu A, Zinellu E, Carru C et al (2018) Oxidative stress-linked biomarkers in idiopathic pulmonary fibrosis: a systematic review and meta-analysis. Biomark Med 12(10):1175–1184PubMedCrossRefGoogle Scholar
  69. 69.
    Rogers LK, Cismowski MJ (2018) Oxidative stress in the lung - the essential paradox. Curr Opin Toxicol 7:37–43PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Gill R, Tsung A, Billiar T (2010) Linking oxidative stress to inflammation: toll-like receptors. Free Radic Biol Med 48(9):1121–1132PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Akira S, Takeda K (2004) Toll-like receptor signalling. Nat Rev Immunol 4(7):499–511PubMedCrossRefGoogle Scholar
  72. 72.
    Kong X, Thimmulappa R, Craciun F, Harvey C, Singh A, Kombairaju P et al (2011) Enhancing Nrf2 pathway by disruption of Keap1 in myeloid leukocytes protects against sepsis. Am J Respir Crit Care Med 184(8):928–938PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Tawadros PS, Powers KA, Ailenberg M, Birch SE, Marshall JC, Szaszi K et al (2015) Oxidative stress increases surface toll-like receptor 4 expression in murine macrophages via ceramide generation. Shock 44(2):157–165PubMedCrossRefGoogle Scholar
  74. 74.
    Kong X, Thimmulappa R, Kombairaju P, Biswal S (2010) NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4 signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 185(1):569–577PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Nakahira K, Kim HP, Geng XH, Nakao A, Wang X, Murase N et al (2006) Carbon monoxide differentially inhibits TLR signaling pathways by regulating ROS-induced trafficking of TLRs to lipid rafts. J Exp Med 203(10):2377–2389PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Jarman ER, Khambata VS, Cope C, Jones P, Roger J, Ye LY et al (2014) An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am J Respir Cell Mol Biol 50(1):158–169PubMedGoogle Scholar
  77. 77.
    Han W, Li H, Cai J, Gleaves LA, Polosukhin VV, Segal BH et al (2013) NADPH oxidase limits lipopolysaccharide-induced lung inflammation and injury in mice through reduction-oxidation regulation of NF-κB activity. J Immunol 190(9):4786–4794PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zhang WJ, Wei H, Tien YT, Frei B (2011) Genetic ablation of phagocytic NADPH oxidase in mice limits TNFα-induced inflammation in the lungs but not other tissues. Free Radic Biol Med 50(11):1517–1525PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Bagaitkar J, Pech NK, Ivanov S, Austin A, Zeng MY, Pallat S et al (2015) NADPH oxidase controls neutrophilic response to sterile inflammation in mice by regulating the IL-1α/G-CSF axis. Blood 126(25):2724–2733PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H, Tempst P et al (2011) TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472(7344):476–480PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bulua AC, Simon A, Maddipati R, Pelletier M, Park H, Kim KY et al (2011) Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1-associated periodic syndrome (TRAPS). J Exp Med 208(3):519–533PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW et al (2018) Oxidative stress modulates the expression of toll-like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep 18(2):1867–1877PubMedGoogle Scholar
  83. 83.
    Que X, Hung MY, Yeang C, Gonen A, Prohaska TA, Sun X et al (2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature 558(7709):301–306PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM et al (2018) The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun 9(1):996PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sapkota M, DeVasure JM, Kharbanda KK, Wyatt TA (2017) Malondialdehyde-acetaldehyde (MAA) adducted surfactant protein induced lung inflammation is mediated through scavenger receptor a (SR-A1). Respir Res 18(1):36PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Wyatt TA, Kharbanda KK, McCaskill ML, Tuma DJ, Yanov D, DeVasure J et al (2012) Malondialdehyde-acetaldehyde-adducted protein inhalation causes lung injury. Alcohol 46(1):51–59PubMedCrossRefGoogle Scholar
  87. 87.
    Guo CJ, Atochina-Vasserman EN, Abramova E, Foley JP, Zaman A, Crouch E et al (2008) S-nitrosylation of surfactant protein-D controls inflammatory function. PLoS Biol 6(11):e266PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lingappan K (2018) NF-κB in oxidative stress. Curr Opin Toxicol 7:81–86PubMedCrossRefGoogle Scholar
  89. 89.
    Korn SH, Wouters EF, Vos N, Janssen-Heininger YM (2001) Cytokine-induced activation of nuclear factor-kappa B is inhibited by hydrogen peroxide through oxidative inactivation of IkappaB kinase. J Biol Chem 276(38):35693–35700PubMedCrossRefGoogle Scholar
  90. 90.
    Kamata H, Manabe T, Oka S, Kamata K, Hirata H (2002) Hydrogen peroxide activates IkappaB kinases through phosphorylation of serine residues in the activation loops. FEBS Lett 519(1–3):231–237PubMedCrossRefGoogle Scholar
  91. 91.
    Li Q, Engelhardt JF (2006) Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase. J Biol Chem 281(3):1495–1505PubMedCrossRefGoogle Scholar
  92. 92.
    Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EF et al (2004) Nitric oxide represses inhibitory kappaB kinase through S-nitrosylation. Proc Natl Acad Sci U S A 101(24):8945–8950PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Seldon MP, Silva G, Pejanovic N, Larsen R, Gregoire IP, Filipe J et al (2007) Heme oxygenase-1 inhibits the expression of adhesion molecules associated with endothelial cell activation via inhibition of NF-kappaB RelA phosphorylation at serine 276. J Immunol 179(11):7840–7851PubMedCrossRefGoogle Scholar
  94. 94.
    Kelleher ZT, Sha Y, Foster MW, Foster WM, Forrester MT, Marshall HE (2014) Thioredoxin-mediated denitrosylation regulates cytokine-induced nuclear factor κB (NF-κB) activation. J Biol Chem 289(5):3066–3072PubMedCrossRefGoogle Scholar
  95. 95.
    Wu M, Bian Q, Liu Y, Fernandes AF, Taylor A, Pereira P et al (2009) Sustained oxidative stress inhibits NF-kappaB activation partially via inactivating the proteasome. Free Radic Biol Med 46(1):62–69PubMedCrossRefGoogle Scholar
  96. 96.
    Oka S, Kamata H, Kamata K, Yagisawa H, Hirata H (2000) N-acetylcysteine suppresses TNF-induced NF-kappaB activation through inhibition of IkappaB kinases. FEBS Lett 472(2–3):196–202PubMedCrossRefGoogle Scholar
  97. 97.
    Thimmulappa RK, Lee H, Rangasamy T, Reddy SP, Yamamoto M, Kensler TW et al (2006) Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis. J Clin Invest 116(4):984–995PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Thimmulappa RK, Scollick C, Traore K, Yates M, Trush MA, Liby KT et al (2006) Nrf2-dependent protection from LPS induced inflammatory response and mortality by CDDO-Imidazolide. Biochem Biophys Res Commun 351(4):883–889PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Howrylak JA, Nakahira K (2017) Inflammasomes: key mediators of lung immunity. Annu Rev Physiol 79:471–494PubMedCrossRefGoogle Scholar
  100. 100.
    Pinkerton JW, Kim RY, Robertson AAB, Hirota JA, Wood LG, Knight DA et al (2017) Inflammasomes in the lung. Mol Immunol 86:44–55PubMedCrossRefGoogle Scholar
  101. 101.
    Abais JM, Xia M, Zhang Y, Boini KM, Li PL (2015) Redox regulation of NLRP3 inflammasomes: ROS as trigger or effector? Antioxid Redox Signal 22(13):1111–1129PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Abais JM, Zhang C, Xia M, Liu Q, Gehr TW, Boini KM et al (2013) NADPH oxidase-mediated triggering of inflammasome activation in mouse podocytes and glomeruli during hyperhomocysteinemia. Antioxid Redox Signal 18(13):1537–1548PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wu J, Yan Z, Schwartz DE, Yu J, Malik AB, Hu G (2013) Activation of NLRP3 inflammasome in alveolar macrophages contributes to mechanical stretch-induced lung inflammation and injury. J Immunol 190(7):3590–3599PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11(2):136–140PubMedCrossRefGoogle Scholar
  105. 105.
    Buskiewicz IA, Montgomery T, Yasewicz EC, Huber SA, Murphy MP, Hartley RC et al (2016) Reactive oxygen species induce virus-independent MAVS oligomerization in systemic lupus erythematosus. Sci Signal 9(456):ra115PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Marumo S, Hoshino Y, Kiyokawa H, Tanabe N, Sato A, Ogawa E et al (2014) p38 mitogen-activated protein kinase determines the susceptibility to cigarette smoke-induced emphysema in mice. BMC Pulm Med 14:79PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Sivanantham A, Pattarayan D, Bethunaickan R, Kar A, Mahapatra SK, Thimmulappa RK et al (2019) Tannic acid protects against experimental acute lung injury through downregulation of TLR4 and MAPK. J Cell Physiol 234(5):6463–6476PubMedCrossRefGoogle Scholar
  108. 108.
    Cuenda A, Rousseau S (2007) p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta 1773(8):1358–1375PubMedCrossRefGoogle Scholar
  109. 109.
    Lee K, Esselman WJ (2002) Inhibition of PTPs by H(2)O(2) regulates the activation of distinct MAPK pathways. Free Radic Biol Med 33(8):1121–1132PubMedCrossRefGoogle Scholar
  110. 110.
    Lin B, Xu J, Feng DG, Wang F, Wang JX, Zhao H (2018) DUSP14 knockout accelerates cardiac ischemia reperfusion (IR) injury through activating NF-κB and MAPKs signaling pathways modulated by ROS generation. Biochem Biophys Res Commun 501(1):24–32PubMedCrossRefGoogle Scholar
  111. 111.
    Chopra P, Kanoje V, Semwal A, Ray A (2008) Therapeutic potential of inhaled p38 mitogen-activated protein kinase inhibitors for inflammatory pulmonary diseases. Expert Opin Investig Drugs 17(10):1411–1425PubMedCrossRefGoogle Scholar
  112. 112.
    Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14(8):1437–1448PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Martin TR, Nakamura M, Matute-Bello G (2003) The role of apoptosis in acute lung injury. Crit Care Med 31(4 Suppl):S184–S188PubMedCrossRefGoogle Scholar
  114. 114.
    Ayala A, Muñoz MF, Argüelles S (2014) Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev 2014:360438PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Choudhary S, Zhang W, Zhou F, Campbell GA, Chan LL, Thompson EB et al (2002) Cellular lipid peroxidation end-products induce apoptosis in human lens epithelial cells. Free Radic Biol Med 32(4):360–369PubMedCrossRefGoogle Scholar
  116. 116.
    Kruman II, Mattson MP (1999) Pivotal role of mitochondrial calcium uptake in neural cell apoptosis and necrosis. J Neurochem 72(2):529–540PubMedCrossRefGoogle Scholar
  117. 117.
    Lee H, Park JR, Kim EJ, Kim WJ, Hong SH, Park SM et al (2016) Cigarette smoke-mediated oxidative stress induces apoptosis via the MAPKs/STAT1 pathway in mouse lung fibroblasts. Toxicol Lett 240(1):140–148PubMedCrossRefGoogle Scholar
  118. 118.
    Harvey CJ, Thimmulappa RK, Singh A, Blake DJ, Ling G, Wakabayashi N et al (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46(4):443–453PubMedCrossRefGoogle Scholar
  119. 119.
    Prakash YS, Pabelick CM, Sieck GC (2017) Mitochondrial dysfunction in airway disease. Chest 152(3):618–626PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wiegman CH, Michaeloudes C, Haji G, Narang P, Clarke CJ, Russell KE et al (2015) Oxidative stress-induced mitochondrial dysfunction drives inflammation and airway smooth muscle remodeling in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol 136(3):769–780PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Liu X, Chen Z (2017) The pathophysiological role of mitochondrial oxidative stress in lung diseases. J Transl Med 15(1):207PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Hoffmann RF, Zarrintan S, Brandenburg SM, Kol A, de Bruin HG, Jafari S et al (2013) Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells. Respir Res 14:97PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Rabinovich RA, Bastos R, Ardite E, Llinàs L, Orozco-Levi M, Gea J et al (2007) Mitochondrial dysfunction in COPD patients with low body mass index. Eur Respir J 29(4):643–650PubMedCrossRefGoogle Scholar
  124. 124.
    Mabalirajan U, Dinda AK, Sharma SK, Ghosh B (2009) Esculetin restores mitochondrial dysfunction and reduces allergic asthma features in experimental murine model. J Immunol 183(3):2059–2067PubMedCrossRefGoogle Scholar
  125. 125.
    Mabalirajan U, Dinda AK, Kumar S, Roshan R, Gupta P, Sharma SK et al (2008) Mitochondrial structural changes and dysfunction are associated with experimental allergic asthma. J Immunol 181(5):3540–3548PubMedCrossRefGoogle Scholar
  126. 126.
    Athale J, Ulrich A, MacGarvey NC, Bartz RR, Welty-Wolf KE, Suliman HB et al (2012) Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in Staphylococcus aureus pneumonia in mice. Free Radic Biol Med 53(8):1584–1594PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D et al (2007) Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 204(13):3173–3181PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H et al (2018) PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy:1–17Google Scholar
  129. 129.
    Ahmad T, Sundar IK, Lerner CA, Gerloff J, Tormos AM, Yao H et al (2015) Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: implications for chronic obstructive pulmonary disease. FASEB J 29(7):2912–2929PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Chilosi M, Carloni A, Rossi A, Poletti V (2013) Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 162(3):156–173CrossRefGoogle Scholar
  131. 131.
    Aravamudan B, Kiel A, Freeman M, Delmotte P, Thompson M, Vassallo R et al (2014) Cigarette smoke-induced mitochondrial fragmentation and dysfunction in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 306(9):L840–L854PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C et al (2015) PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 125(2):521–538PubMedCrossRefGoogle Scholar
  133. 133.
    Chen BB, Coon TA, Glasser JR, Zou C, Ellis B, Das T et al (2014) E3 ligase subunit Fbxo15 and PINK1 kinase regulate cardiolipin synthase 1 stability and mitochondrial function in pneumonia. Cell Rep 7(2):476–487PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Tait SW, Green DR (2013) Mitochondrial regulation of cell death. Cold Spring Harb Perspect Biol:5(9)Google Scholar
  135. 135.
    Schumacker PT, Gillespie MN, Nakahira K, Choi AM, Crouser ED, Piantadosi CA et al (2014) Mitochondria in lung biology and pathology: more than just a powerhouse. Am J Physiol Lung Cell Mol Physiol 306(11):L962–L974PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Szczesny B, Marcatti M, Ahmad A, Montalbano M, Brunyánszki A, Bibli SI et al (2018) Mitochondrial DNA damage and subsequent activation of Z-DNA binding protein 1 links oxidative stress to inflammation in epithelial cells. Sci Rep 8(1):914PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Krychtiuk KA, Ruhittel S, Hohensinner PJ, Koller L, Kaun C, Lenz M et al (2015) Mitochondrial DNA and toll-like Receptor-9 are associated with mortality in critically ill patients. Crit Care Med 43(12):2633–2641PubMedCrossRefGoogle Scholar
  138. 138.
    McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC et al (2010) Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330(6002):362–366PubMedCrossRefGoogle Scholar
  139. 139.
    Lommatzsch M, Cicko S, Müller T, Lucattelli M, Bratke K, Stoll P et al (2010) Extracellular adenosine triphosphate and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 181(9):928–934PubMedCrossRefGoogle Scholar
  140. 140.
    Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F et al (2007) Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med 13(8):913–919PubMedCrossRefGoogle Scholar
  141. 141.
    Riteau N, Gasse P, Fauconnier L, Gombault A, Couegnat M, Fick L et al (2010) Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am J Respir Crit Care Med 182(6):774–783PubMedCrossRefGoogle Scholar
  142. 142.
    Dudek J (2017) Role of Cardiolipin in mitochondrial signaling pathways. Front Cell Dev Biol 5:90PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ray NB, Durairaj L, Chen BB, McVerry BJ, Ryan AJ, Donahoe M et al (2010) Dynamic regulation of cardiolipin by the lipid pump Atp8b1 determines the severity of lung injury in experimental pneumonia. Nat Med 16(10):1120–1127PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J et al (2013) Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem 288(2):770–777CrossRefGoogle Scholar
  145. 145.
    Schröder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedCrossRefGoogle Scholar
  146. 146.
    Tanjore H, Blackwell TS, Lawson WE (2012) Emerging evidence for endoplasmic reticulum stress in the pathogenesis of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 302(8):L721–L729PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kim SR, Lee YC (2015) Endoplasmic reticulum stress and the related signaling networks in severe asthma. Allergy Asthma Immunol Res 7(2):106–117PubMedCrossRefGoogle Scholar
  148. 148.
    Kenche H, Ye ZW, Vedagiri K, Richards DM, Gao XH, Tew KD et al (2016) Adverse outcomes associated with cigarette smoke radicals related to damage to protein-disulfide isomerase. J Biol Chem 291(9):4763–4778PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Geraghty P, Baumlin N, Salathe MA, Foronjy RF, D'Armiento JM (2016) Glutathione Peroxidase-1 suppresses the unfolded protein response upon cigarette smoke exposure. Mediators Inflamm 2016:9461289PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Teng RJ, Jing X, Michalkiewicz T, Afolayan AJ, Wu TJ, Konduri GG (2017) Attenuation of endoplasmic reticulum stress by caffeine ameliorates hyperoxia-induced lung injury. Am J Physiol Lung Cell Mol Physiol 312(5):L586–LL98PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Plaisance V, Brajkovic S, Tenenbaum M, Favre D, Ezanno H, Bonnefond A et al (2016) Endoplasmic reticulum stress links oxidative stress to impaired pancreatic Beta-cell function caused by human oxidized LDL. PLoS One 11(9):e0163046PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bhandary B, Marahatta A, Kim HR, Chae HJ (2012) An involvement of oxidative stress in endoplasmic reticulum stress and its associated diseases. Int J Mol Sci 14(1):434–456PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Afanas'ev I (2014) New nucleophilic mechanisms of ros-dependent epigenetic modifications: comparison of aging and cancer. Aging Dis 5(1):52–62PubMedCrossRefGoogle Scholar
  154. 154.
    Kietzmann T, Petry A, Shvetsova A, Gerhold JM, Görlach A (2017) The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br J Pharmacol 174(12):1533–1554PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Mentch SJ, Mehrmohamadi M, Huang L, Liu X, Gupta D, Mattocks D et al (2015) Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism. Cell Metab 22(5):861–873PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Cyr AR, Domann FE (2011) The redox basis of epigenetic modifications: from mechanisms to functional consequences. Antioxid Redox Signal 15(2):551–589PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Mercado N, Thimmulappa R, Thomas CM, Fenwick PS, Chana KK, Donnelly LE et al (2011) Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun 406(2):292–298PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Osoata GO, Yamamura S, Ito M, Vuppusetty C, Adcock IM, Barnes PJ et al (2009) Nitration of distinct tyrosine residues causes inactivation of histone deacetylase 2. Biochem Biophys Res Commun 384(3):366–371PubMedCrossRefGoogle Scholar
  159. 159.
    Barnes PJ, Ito K, Adcock IM (2004) Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase. Lancet 363(9410):731–733PubMedCrossRefGoogle Scholar
  160. 160.
    Lin Y, Liu X, Cheng Y, Yang J, Huo Y, Zhang C (2009) Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284(12):7903–7913PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Emde A, Hornstein E (2014) miRNAs at the interface of cellular stress and disease. EMBO J 33(13):1428–1437PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Potteti HR, Rajasekaran S, Rajamohan SB, Tamatam CR, Reddy NM, Reddy SP (2016) Sirtuin 1 promotes Hyperoxia-induced lung epithelial cell death independent of NF-E2-related factor 2 activation. Am J Respir Cell Mol Biol 54(5):697–706PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD (2012) Particulate matter, DNA methylation in nitric oxide synthase, and childhood respiratory disease. Environ Health Perspect 120(9):1320–1326PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Yang IV, Schwartz DA (2015) Epigenetics of idiopathic pulmonary fibrosis. Transl Res 165(1):48–60PubMedCrossRefGoogle Scholar
  165. 165.
    Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T (2015) Redox-fibrosis: impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 6:344–352PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Liu RM, Desai LP (2015) Reciprocal regulation of TGF-β and reactive oxygen species: a perverse cycle for fibrosis. Redox Biol 6:565–577PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Chan EC, Peshavariya HM, Liu GS, Jiang F, Lim SY, Dusting GJ (2013) Nox4 modulates collagen production stimulated by transforming growth factor β1 in vivo and in vitro. Biochem Biophys Res Commun 430(3):918–925PubMedCrossRefGoogle Scholar
  168. 168.
    Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13(5):730–737PubMedCrossRefGoogle Scholar
  169. 169.
    Carnesecchi S, Deffert C, Donati Y, Basset O, Hinz B, Preynat-Seauve O et al (2011) A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid Redox Signal 15(3):607–619PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Leask A (2013) Integrin. Adv Wound Care (New Rochelle) 2(4):160–166CrossRefGoogle Scholar
  171. 171.
    Waisberg DR, Barbas-Filho JV, Parra ER, Fernezlian S, de Carvalho CR, Kairalla RA et al (2010) Abnormal expression of telomerase/apoptosis limits type II alveolar epithelial cell replication in the early remodeling of usual interstitial pneumonia/idiopathic pulmonary fibrosis. Hum Pathol 41(3):385–391PubMedCrossRefGoogle Scholar
  172. 172.
    Bocchino M, Agnese S, Fagone E, Svegliati S, Grieco D, Vancheri C et al (2010) Reactive oxygen species are required for maintenance and differentiation of primary lung fibroblasts in idiopathic pulmonary fibrosis. PLoS One 5(11):e14003PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Button B, Anderson WH, Boucher RC (2016) Mucus Hyperconcentration as a unifying aspect of the chronic Bronchitic phenotype. Ann Am Thorac Soc 13(Suppl 2):S156–S162PubMedPubMedCentralGoogle Scholar
  174. 174.
    Ridley C, Thornton DJ (2018) Mucins: the frontline defence of the lung. Biochem Soc Trans 46(5):1099–1106PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Kim HJ, Park YD, Moon UY, Kim JH, Jeon JH, Lee JG et al (2008) The role of Nox4 in oxidative stress-induced MUC5AC overexpression in human airway epithelial cells. Am J Respir Cell Mol Biol 39(5):598–609PubMedCrossRefGoogle Scholar
  176. 176.
    Takeyama K, Dabbagh K, Jeong Shim J, Dao-Pick T, Ueki IF, Nadel JA (2000) Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J Immunol 164(3):1546–1552PubMedCrossRefGoogle Scholar
  177. 177.
    Rose MC, Voynow JA (2006) Respiratory tract mucin genes and mucin glycoproteins in health and disease. Physiol Rev 86(1):245–278PubMedCrossRefGoogle Scholar
  178. 178.
    Kim KC (2012) Role of epithelial mucins during airway infection. Pulm Pharmacol Ther 25(6):415–419PubMedCrossRefGoogle Scholar
  179. 179.
    Shao MX, Nadel JA (2005) Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci U S A 102(3):767–772PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Yu H, Li Q, Zhou X, Kolosov VP, Perelman JM (2011) Role of hyaluronan and CD44 in reactive oxygen species-induced mucus hypersecretion. Mol Cell Biochem 352(1–2):65–75PubMedCrossRefGoogle Scholar
  181. 181.
    Darcan-Nicolaisen Y, Meinicke H, Fels G, Hegend O, Haberland A, Kühl A et al (2009) Small interfering RNA against transcription factor STAT6 inhibits allergic airway inflammation and hyperreactivity in mice. J Immunol 182(12):7501–7508PubMedCrossRefGoogle Scholar
  182. 182.
    Cantin AM, North SL, Hubbard RC, Crystal RG (1987) Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol (1985) 63(1):152–157CrossRefGoogle Scholar
  183. 183.
    Cantin AM, Hubbard RC, Crystal RG (1989) Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am Rev Respir Dis 139(2):370–372PubMedCrossRefGoogle Scholar
  184. 184.
    Gould NS, Day BJ (2011) Targeting maladaptive glutathione responses in lung disease. Biochem Pharmacol 81(2):187–193PubMedCrossRefGoogle Scholar
  185. 185.
    Qanungo S, Starke DW, Pai HV, Mieyal JJ, Nieminen AL (2007) Glutathione supplementation potentiates hypoxic apoptosis by S-glutathionylation of p65-NFkappaB. J Biol Chem 282(25):18427–18436PubMedCrossRefGoogle Scholar
  186. 186.
    Reynaert NL, van der Vliet A, Guala AS, McGovern T, Hristova M, Pantano C et al (2006) Dynamic redox control of NF-kappaB through glutaredoxin-regulated S-glutathionylation of inhibitory kappaB kinase beta. Proc Natl Acad Sci U S A 103(35):13086–13091PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Panda K, Chattopadhyay R, Ghosh MK, Chattopadhyay DJ, Chatterjee IB (1999) Vitamin C prevents cigarette smoke induced oxidative damage of proteins and increased proteolysis. Free Radic Biol Med 27(9–10):1064–1079PubMedCrossRefGoogle Scholar
  188. 188.
    Crobeddu B, Aragao-Santiago L, Bui LC, Boland S, Baeza SA (2017) Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ Pollut 230:125–133PubMedCrossRefGoogle Scholar
  189. 189.
    Wu F, Schuster DP, Tyml K, Wilson JX (2007) Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med 42(1):124–131PubMedCrossRefGoogle Scholar
  190. 190.
    Kelly FJ, Tetley TD (1997) Nitrogen dioxide depletes uric acid and ascorbic acid but not glutathione from lung lining fluid. Biochem J 325(Pt 1):95–99PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Mudway IS, Krishna MT, Frew AJ, MacLeod D, Sandstrom T, Holgate ST et al (1999) Compromised concentrations of ascorbate in fluid lining the respiratory tract in human subjects after exposure to ozone. Occup Environ Med 56(7):473–481PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Gupta I, Ganguly S, Rozanas CR, Stuehr DJ, Panda K (2016) Ascorbate attenuates pulmonary emphysema by inhibiting tobacco smoke and Rtp801-triggered lung protein modification and proteolysis. Proc Natl Acad Sci U S A 113(29):E4208–E4217PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Kelly FJ, Mudway I, Blomberg A, Frew A, Sandström T (1999) Altered lung antioxidant status in patients with mild asthma. Lancet 354(9177):482–483PubMedCrossRefGoogle Scholar
  194. 194.
    Kongerud J, Crissman K, Hatch G, Alexis N (2003) Ascorbic acid is decreased in induced sputum of mild asthmatics. Inhal Toxicol 15(2):101–109PubMedCrossRefGoogle Scholar
  195. 195.
    Wilkinson M, Hart A, Milan SJ, Sugumar K (2014) Vitamins C and E for asthma and exercise-induced bronchoconstriction. Cochrane Database Syst Rev 6:CD010749Google Scholar
  196. 196.
    Behndig AF, Blomberg A, Helleday R, Kelly FJ, Mudway IS (2009) Augmentation of respiratory tract lining fluid ascorbate concentrations through supplementation with vitamin C. Inhal Toxicol 21(3):250–258PubMedCrossRefGoogle Scholar
  197. 197.
    Peden DB, Hohman R, Brown ME, Mason RT, Berkebile C, Fales HM et al (1990) Uric acid is a major antioxidant in human nasal airway secretions. Proc Natl Acad Sci U S A 87(19):7638–7642PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Peden DB, Swiersz M, Ohkubo K, Hahn B, Emery B, Kaliner MA (1993) Nasal secretion of the ozone scavenger uric acid. Am Rev Respir Dis 148(2):455–461PubMedCrossRefGoogle Scholar
  199. 199.
    Kelly FJ, Blomberg A, Frew A, Holgate ST, Sandstrom T (1996) Antioxidant kinetics in lung lavage fluid following exposure of humans to nitrogen dioxide. Am J Respir Crit Care Med 154(6 Pt 1):1700–1705PubMedCrossRefGoogle Scholar
  200. 200.
    Kahnert K, Alter P, Welte T, Huber RM, Behr J, Biertz F et al (2018) Uric acid, lung function, physical capacity and exacerbation frequency in patients with COPD: a multi-dimensional approach. Respir Res 19(1):110PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Horsfall LJ, Nazareth I, Petersen I (2014) Serum uric acid and the risk of respiratory disease: a population-based cohort study. Thorax 69(11):1021–1026PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Guertin KA, Grant RK, Arnold KB, Burwell L, Hartline J, Goodman PJ et al (2016) Effect of long-term vitamin E and selenium supplementation on urine F2-isoprostanes, a biomarker of oxidative stress. Free Radic Biol Med 95:349–356PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Hanson C, Lyden E, Furtado J, Campos H, Sparrow D, Vokonas P et al (2016) Serum tocopherol levels and vitamin E intake are associated with lung function in the normative aging study. Clin Nutr 35(1):169–174PubMedCrossRefGoogle Scholar
  204. 204.
    Burbank AJ, Duran CG, Pan Y, Burns P, Jones S, Jiang Q et al (2018) Gamma tocopherol-enriched supplement reduces sputum eosinophilia and endotoxin-induced sputum neutrophilia in volunteers with asthma. J Allergy Clin Immunol 141(4):1231-8.e1CrossRefGoogle Scholar
  205. 205.
    Peh HY, Tan WSD, Chan TK, Pow CW, Foster PS, Wong WSF (2017) Vitamin E isoform γ-tocotrienol protects against emphysema in cigarette smoke-induced COPD. Free Radic Biol Med 110:332–344PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Pearson PJ, Lewis SA, Britton J, Fogarty A (2004) Vitamin E supplements in asthma: a parallel group randomised placebo controlled trial. Thorax 59(8):652–656PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Bridges JP, Davis HW, Damodarasamy M, Kuroki Y, Howles G, Hui DY et al (2000) Pulmonary surfactant proteins a and D are potent endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J Biol Chem 275(49):38848–38855PubMedCrossRefGoogle Scholar
  208. 208.
    Laucho-Contreras ME, Polverino F, Tesfaigzi Y, Pilon A, Celli BR, Owen CA (2016) Club cell protein 16 (CC16) augmentation: a potential disease-modifying approach for chronic obstructive pulmonary disease (COPD). Expert Opin Ther Targets 20(7):869–883PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Laucho-Contreras ME, Polverino F, Gupta K, Taylor KL, Kelly E, Pinto-Plata V et al (2015) Protective role for club cell secretory protein-16 (CC16) in the development of COPD. Eur Respir J 45(6):1544–1556PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Guerra S, Halonen M, Vasquez MM, Spangenberg A, Stern DA, Morgan WJ et al (2015) Relation between circulating CC16 concentrations, lung function, and development of chronic obstructive pulmonary disease across the lifespan: a prospective study. Lancet Respir Med 3(8):613–620PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Lam DC, Kwok HH, Yu WC, Ko FW, Tam CY, Lau AC et al (2018) CC16 levels correlate with cigarette smoke exposure in bronchial epithelial cells and with lung function decline in smokers. BMC Pulm Med 18(1):47PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Rahman I, MacNee W (2012) Antioxidant pharmacological therapies for COPD. Curr Opin Pharmacol 12(3):256–265PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Bargagli E, Olivieri C, Bennett D, Prasse A, Muller-Quernheim J, Rottoli P (2009) Oxidative stress in the pathogenesis of diffuse lung diseases: a review. Respir Med 103(9):1245–1256PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Gao F, Kinnula VL, Myllärniemi M, Oury TD (2008) Extracellular superoxide dismutase in pulmonary fibrosis. Antioxid Redox Signal 10(2):343–354PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Yao H, Arunachalam G, Hwang JW, Chung S, Sundar IK, Kinnula VL et al (2010) Extracellular superoxide dismutase protects against pulmonary emphysema by attenuating oxidative fragmentation of ECM. Proc Natl Acad Sci U S A 107(35):15571–15576PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Foronjy RF, Mirochnitchenko O, Propokenko O, Lemaitre V, Jia Y, Inouye M et al (2006) Superoxide dismutase expression attenuates cigarette smoke- or elastase-generated emphysema in mice. Am J Respir Crit Care Med 173(6):623–631PubMedCrossRefGoogle Scholar
  217. 217.
    Comhair SA, Ricci KS, Arroliga M, Lara AR, Dweik RA, Song W et al (2005) Correlation of systemic superoxide dismutase deficiency to airflow obstruction in asthma. Am J Respir Crit Care Med 172(3):306–313PubMedPubMedCentralCrossRefGoogle Scholar
  218. 218.
    Comhair SA, Bhathena PR, Dweik RA, Kavuru M, Erzurum SC (2000) Rapid loss of superoxide dismutase activity during antigen-induced asthmatic response. Lancet 355(9204):624PubMedCrossRefGoogle Scholar
  219. 219.
    Dittrich AM, Meyer HA, Krokowski M, Quarcoo D, Ahrens B, Kube SM et al (2010) Glutathione peroxidase-2 protects from allergen-induced airway inflammation in mice. Eur Respir J 35(5):1148–1154PubMedCrossRefGoogle Scholar
  220. 220.
    Kunwar A, Haston CK (2014) Basal levels of glutathione peroxidase correlate with onset of radiation induced lung disease in inbred mouse strains. Am J Physiol Lung Cell Mol Physiol 307(8):L597–L604PubMedCrossRefGoogle Scholar
  221. 221.
    Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Pääkkö P, Kang SW et al (2002) Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 57(2):157–164PubMedPubMedCentralCrossRefGoogle Scholar
  222. 222.
    Ryter SW, Choi AM (2009) Heme oxygenase-1/carbon monoxide: from metabolism to molecular therapy. Am J Respir Cell Mol Biol 41(3):251–260PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Duckers HJ, Boehm M, True AL, Yet SF, San H, Park JL et al (2001) Heme oxygenase-1 protects against vascular constriction and proliferation. Nat Med 7(6):693–698PubMedCrossRefGoogle Scholar
  224. 224.
    Zampetaki A, Minamino T, Mitsialis SA, Kourembanas S (2003) Effect of heme oxygenase-1 overexpression in two models of lung inflammation. Exp Biol Med (Maywood) 228(5):442–446CrossRefGoogle Scholar
  225. 225.
    Otterbein LE, Kolls JK, Mantell LL, Cook JL, Alam J, Choi AM (1999) Exogenous administration of heme oxygenase-1 by gene transfer provides protection against hyperoxia-induced lung injury. J Clin Invest 103(7):1047–1054PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Yamamoto M, Kensler TW, Motohashi H (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol Rev 98(3):1169–1203PubMedCrossRefGoogle Scholar
  227. 227.
    Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24(19):8477–8486PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Tong KI, Katoh Y, Kusunoki H, Itoh K, Tanaka T, Yamamoto M (2006) Keap1 recruits Neh2 through binding to ETGE and DLG motifs: characterization of the two-site molecular recognition model. Mol Cell Biol 26(8):2887–2900PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD et al (2005) Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice. J Exp Med 202(1):47–59PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Cho HY, Reddy SP, Yamamoto M, Kleeberger SR (2004) The transcription factor NRF2 protects against pulmonary fibrosis. FASEB J 18(11):1258–1260PubMedCrossRefGoogle Scholar
  231. 231.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116CrossRefGoogle Scholar
  232. 232.
    Goven D, Boutten A, Leçon-Malas V, Marchal-Sommé J, Amara N, Crestani B et al (2008) Altered Nrf2/Keap1-Bach1 equilibrium in pulmonary emphysema. Thorax 63(10):916–924CrossRefGoogle Scholar
  233. 233.
    Swamy SM, Rajasekaran NS, Thannickal VJ (2016) Nuclear factor-Erythroid-2-related factor 2 in aging and lung fibrosis. Am J Pathol 186(7):1712–1723PubMedPubMedCentralCrossRefGoogle Scholar
  234. 234.
    Espinosa-Diez C, Miguel V, Mennerich D, Kietzmann T, Sánchez-Pérez P, Cadenas S et al (2015) Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol 6:183–197PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Grandjean EM, Berthet P, Ruffmann R, Leuenberger P (2000) Efficacy of oral long-term N-acetylcysteine in chronic bronchopulmonary disease: a meta-analysis of published double-blind, placebo-controlled clinical trials. Clin Ther 22(2):209–221PubMedCrossRefGoogle Scholar
  236. 236.
    Decramer M, Rutten-van Mölken M, Dekhuijzen PN, Troosters T, van Herwaarden C, Pellegrino R et al (2005) Effects of N-acetylcysteine on outcomes in chronic obstructive pulmonary disease (bronchitis randomized on NAC cost-utility study, BRONCUS): a randomised placebo-controlled trial. Lancet 365(9470):1552–1560PubMedCrossRefGoogle Scholar
  237. 237.
    Rahman I (2006) Antioxidant therapies in COPD. Int J Chron Obstruct Pulmon Dis 1(1):15–29PubMedPubMedCentralGoogle Scholar
  238. 238.
    Brown RH, Reynolds C, Brooker A, Talalay P, Fahey JW (2015) Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respir Res 16:106PubMedPubMedCentralCrossRefGoogle Scholar
  239. 239.
    Wise RA, Holbrook JT, Criner G, Sethi S, Rayapudi S, Sudini KR et al (2016) Lack of effect of Oral Sulforaphane administration on Nrf2 expression in COPD: a randomized, double-blind, Placebo controlled trial. PLoS One 11(11):e0163716PubMedPubMedCentralCrossRefGoogle Scholar
  240. 240.
    Sudini K, Diette GB, Breysse PN, McCormack MC, Bull D, Biswal S et al (2016) A randomized controlled trial of the effect of broccoli sprouts on antioxidant gene expression and airway inflammation in asthmatics. J Allergy Clin Immunol Pract 4(5):932–940PubMedPubMedCentralCrossRefGoogle Scholar
  241. 241.
    Noah TL, Zhang H, Zhou H, Glista-Baker E, Müller L, Bauer RN et al (2014) Effect of broccoli sprouts on nasal response to live attenuated influenza virus in smokers: a randomized, double-blind study. PLoS One 9(6):e98671PubMedPubMedCentralCrossRefGoogle Scholar
  242. 242.
    Egner PA, Chen JG, Zarth AT, Ng DK, Wang JB, Kensler KH et al (2014) Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer Prev Res (Phila) 7(8):813–823CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Rajesh K. Thimmulappa
    • 1
    Email author
  • Indranil Chattopadhyay
    • 2
  • Subbiah Rajasekaran
    • 3
  1. 1.Department of Biochemistry, JSS Medical CollegeJSS Academy of Higher Education & ResearchMysoreIndia
  2. 2.Department of Life SciencesCentral University of Tamil NaduThiruvarurIndia
  3. 3.Department of Biotechnology, BIT-CampusAnna UniversityTiruchirappalliIndia

Personalised recommendations