Advertisement

Role of NADPH Oxidase-Induced Oxidative Stress in Matrix Metalloprotease-Mediated Lung Diseases

  • Jaganmay Sarkar
  • Tapati Chakraborti
  • Sajal ChakrabortiEmail author
Chapter

Abstract

Activation of proteases is known to dysregulate the homeostasis of lung metabolomics and thereby triggers a variety of lung diseases such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS) and pulmonary hypertension (PH). Among proteases, matrix metalloprotease (MMP) plays a critical role in regulating the turnover (degradation and synthesis) of extracellular matrix (ECM). MMPs facilitate cell migration by modulating production of cytokines and other signaling molecules, which are involved in the pathogenesis of lung diseases. Under normal condition, proteases are controlled by endogenous antiproteases. For example, MMPs are regulated endogenously by their inhibitors, TIMPs. Agonists induced imbalance of MMP-TIMP results in MMP activation. Oxidative stress by modulating inflammatory signaling targets triggers activation of MMPs and thereby initiates the progression of lung diseases. This suggests that MMP inhibition is an attractive therapeutic strategy to ameliorate oxidant-induced lung diseases.

Keywords

NADPH oxidase Superoxide Metalloproteases Antiproteases Metabolomics 

Notes

Acknowledgement

Financial assistance from the Council of Scientific and Industrial Research (CSIR), New Delhi, is greatly acknowledged.

References

  1. 1.
    Dunsmore SE, Rannels DE (1996) Extracellular matrix biology in the lung. Am J Phys 270:L3–L27Google Scholar
  2. 2.
    Davey A, McAuley DF, O’Kane CM (2011) Matrix metalloproteinases in acute lung injury: mediators of injury and drivers of repair. Eur Respir J 38:959–970PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Kandasamy AD, Chow AK, Ali MA et al (2010) Matrix metalloproteinase-2 and myocardial oxidative stress injury: beyond the matrix. Cardiovasc Res 85:413–423PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Skiles JW, Gonnella NC, Jeng A (2004) The design, structure, and clinical update of small molecular weight matrix metalloproteinase inhibitors. Curr Med Chem 11:2911–2977PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Fanjul-Fernández M, Folgueras AR, Cabrera S et al (2010) Matrix metalloproteinases: evolution, gene regulation and functional analysis in mouse models. Biochim Biophys Acta 1803:3–19PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Klein T, Bischoff R (2011) Physiology and pathophysiology of matrix metalloproteases. Amino Acids 41:271–290PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Woessner JF Jr (1991) Matrix metalloproteases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Gallelli L, Falcone D, Scaramuzzino M et al (2014) Effects of simvastatin on cell viability and proinflammatory pathways in lung adenocarcinoma cells exposed to hydrogen peroxide. BMC Pharmacol Toxicol 15:67PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lee IT, Yang CM (2012) Role of NADPH oxidase/ROS in pro-inflammatory mediators-induced airway and pulmonary diseases. Biochem Pharmacol 84:581–590PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Iuchi T, Akaike M, Mitsui T et al (2003) Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res 92:81–87PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Marumo T, Schini-Kerth VB, Brandes RP et al (1998) Glucocorticoids inhibit superoxide anion production and p22 phox mRNA expression in human aortic smooth muscle cells. Hypertension 32:1083–1088PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Yan F, Li W, Jono H et al (2008) Reactive oxygen species regulate Pseudomonas aeruginosa lipopolysaccharide-induced MUC5AC mucin expression via PKC-NADPH oxidase-ROS-TGF-alpha signaling pathways in human airway epithelial cells. Biochem Biophys Res Commun 366:513–519PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lo YY, Conquer JA, Grinstein S et al (1998) Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes: involvement of reactive oxygen species. J Cell Biochem 69:19–29PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Frey RS, Rahman A, Kefer JC et al (2002) PKCzeta regu-238 Jiang Et Al. lates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ Res 90:1012–1019PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Muzaffar S, Shukla N, Angelini G, Jeremy JY (2004) Nitroaspirins and morpholinosydnonimine but not aspirin inhibit the formation of superoxide and the expression of gp91phox induced by endotoxin and cytokines in pig pulmonary artery vascular smooth muscle cells and endothelial cells. Circulation 110:1140–1147PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Li JM, Fan LM, Christie MR et al (2005) Acute tumor necrosis factor alpha signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 25:2320–2330PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Wu F, Schuster DP, Tyml K et al (2007) Ascorbate inhibits NADPH oxidase subunit p47phox expression in microvascular endothelial cells. Free Radic Biol Med 42:124–131PubMedCrossRefGoogle Scholar
  18. 18.
    Yang D, Elner SG, Bian ZM et al (2007a) Proinflammatory cytokines increase reactive oxygen species through mitochondria and NADPH oxidase in cultured RPE cells. Exp Eye Res 85:462–472PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Kamizato M, Nishida K, Masuda K et al (2009) Interleukin 10 inhibits interferon gamma- and tumor necrosis factor alpha-stimulated activation of NADPH oxidase 1 in human colonic epithelial cells and the mouse colon. J Gastroenterol 44:1172–1184PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Seshiah PN, Weber DS, Rocic P et al (2002) Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406–413PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Chakraborti S, Sarkar J, Chowdhury A et al (2017) Role of ADP ribosylation factor6- Cytohesin1-PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Arch Biochem Biophys 633:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Chakraborti S, Sarkar J, Bhuyan R et al (2017) Role of catechins on ET-1 induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: determination of the probable mechanism by molecular docking studies. Biochem Cell Biol.  https://doi.org/10.1139/bcb-2017-0179PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lavigne MC, Eppihimer MJ (2005) Cigarette smoke condensate induces MMP-12 gene expression in airway-like epithelia. Biochem Biophys Res Commun 330:194–203PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Amara N, Bachoual R, Desmard M et al (2007) Diesel exhaust particles induce matrix metalloprotease-1 in human lung epithelial cells via a NADP(H) oxidase/NOX4 redox-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 293:L170–L181PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Jaimes EA, DeMaster EG, Tian RX et al (2004) Stable compounds of cigarette smoke induce endothelial superoxide anion production via NADPH oxidase activation. Arterioscler Thromb Vasc Biol 24:1031–1036PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Orosz Z, Csiszar A, Labinskyy N et al (2007) Cigarette smoke-induced proinflammatory alterations in the endothelial phenotype: role of NAD(P)H oxidase activation. Am J Physiol Heart Circ Physiol 292:H130–H139PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Rahman I, MacNee W (2000) Oxidative stress and regulation of glutathione in lung inflammation. Eur Respir J 16:534–554PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Barbieri SS, Zacchi E, Amadio P (2011) Cytokines present in smokers’ serum interact with smoke components to enhance endothelial dysfunction. Cardiovasc Res 90:475–483PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lee IT, Luo SF, Lee CW et al (2009) Overexpression of HO- 1 protects against TNF-a-mediated airway inflammation by down-regulation of TNFR1-dependent oxidative stress. Am J Pathol 175:519–532PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Lee CW, Lin CC, Lee IT et al (2011) Activation and induction of cytosolic phospholipase A2 by TNF-a mediated through Nox2, MAPKs, NF-kB, and p300 in human tracheal smooth muscle cells. J Cell Physiol 226:2103–2114PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Lin CP, Huang PH, Tsai HS et al (2011) Monascus purpureus fermented rice inhibits tumor necrosis factor-a-induced upregulation of matrix metalloproteinase 2 and 9 in human aortic smooth muscle cells. J Pharm Pharmacol 63:1587–1594PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Luo SF, Chang CC, Lee IT et al (2009) Activation of ROS/NF-kappaB and Ca2+/CaM kinase II are necessary for VCAM-1 induction in IL-1b-treated human tracheal smooth muscle cells. Toxicol Appl Pharmacol 237:8–21PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313CrossRefGoogle Scholar
  34. 34.
    Cui Y, Robertson J, Maharaj S et al (2011) Oxidative stress contributes to the induction and persistence of TGF-b1 induced pulmonary fibrosis. Int J Biochem Cell Biol 43:1122–1133PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Chowdhury A, Chakraborti T, Chakraborti S et al (2016) Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation. Arch Biochem Biophys 603:91–101PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sarkar J, Chowdhury A, Chakraborti T et al (2016) Cross-talk between NADPH oxidase-PKCα-p(38)MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells. Mol Cell Biochem 415:13–28PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Mandegar M, Fung YCB, Huang W et al (2004) Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 68:75–103PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Pidgeon GP, Tamosiuniene R, Chen G et al (2004) Intravascular thrombosis after hypoxia-induced pulmonary hypertension: regulation by cyclooxygenase-2. Circulation 110:2701–2707PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Barberá JA, Peinado VI, Santos S (2003) Pulmonary hypertension in chronic obstructive pulmonary disease. Eur Respir J 21:892–905PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Woessner JF Jr (1991) Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J 5:2145–2154PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Frisdal E, Gest V, Vieillard-Baron A, Levame M et al (2001) Gelatinase expression in pulmonary arteries during experimental pulmonary hypertension. Eur Respir J 18:838–845PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Järveläinen H, Sainio A, Koulu M et al (2009) Extracellular matrix molecules: potential targets in pharmacotherapy. Pharmacol Rev 61:198–223PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Lepetit H, Eddahibi S, Fadel E et al (2005) Smooth muscle cell matrix metalloproteinases in idiopathic pulmonary arterial hypertension. Eur Respir J 25:834–842PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jo Y, Yeon J, Kim HJ et al (2000) Analysis of tissue inhibitor of metalloproteinases-2 effect on pro-matrix metalloproteinase-2 activation by membrane-type 1 matrix metalloproteinase using baculovirus/insect-cell expression system. Biochem J 345:511–519PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yu TM, Chen YH, Hsu JY et al (2009) Systemic inflammation is associated with pulmonary hypertension in patients undergoing haemodialysis. Nephrol Dial Transplant 24:1946–1951PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Roy S, Samanta K, Chakraborti T et al (2011) Role of TGF-β1 and TNF-α in IL-1β mediated activation of proMMP-9 in pulmonary artery smooth muscle cells: involvement of an aprotinin sensitive protease. Arch Biochem Biophys 513:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Pullamsetti S, Krick S, Yilmaz H et al (2005) Inhaled tolafentrine reverses pulmonary vascular remodeling via inhibition of smooth muscle cell migration. Respir Res 6:128PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Thakker-Varia S, Tozzi CA, Poiani GJ et al (1998) Expression of matrix-degrading enzymes in pulmonary vascular remodeling in the rat. Am J Phys 275:L398–L406113Google Scholar
  50. 50.
    Herget J, Novotna J, Bibova J et al (2003) Metalloproteinase inhibition by Batimastat attenuates pulmonary hypertension in chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol 285:L199–L208PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    MacFarlane NG, Miller DJ (1992) Depression of peak force without altering calcium sensitivity by the superoxide anion in chemically skinned cardiac muscle of rat. Circ Res 70(532):1217–1224PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Lovett DH, Mahimkar R, Raffai RL et al (2012) A novel intracellular isoform of matrix metalloproteinase-2 induced by oxidative stress activates innate immunity. PLoS One 7:e34177PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sawicki G, Leon H, Sawicka J et al (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112:544–552PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Schulz R (2007) Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 47:211–242PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Ali MA, Fan X, Schulz R (2011) Cardiac sarcomeric proteins: novel intracellular targets 483 of matrix metalloproteinase-2 in heart disease. Trends Cardiovasc Med 21:112–118PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Chakraborti T, Das S, Mandal M, Mandal A et al (2002) Role of Ca2+-dependent metalloprotease-2 in stimulating Ca2+ ATPase activity under peroxynitrite treatment in bovine pulmonary artery smooth muscle membrane. IUBMB Life 53:167–173PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Chakraborti S, Mandal A, Das S et al (2004) Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2. Biochim Biophys Acta 1671:70–78PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Cowley PM, Wang G, Joshi S et al (2017) α(1A)-subtype adrenergic agonist therapy for the failing right ventricle. Am J Physiol Heart Circ Physiol 313:H1109–H1118PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Imai K, Yokohama Y, Nakanishi I et al (1995) Matrix metalloproteinase 7 (matrilysin) from human rectal carcinoma cells. Activation of the precursor, interaction with other matrix metalloproteinases and enzymic properties. J Biol Chem 270:6691–6697PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ferry G, Lonchampt M, Pennel L et al (1997) Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett 402:111–115PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Manzano-Leon N, Quintana R, Sanchez B (2013) Variation in the composition and in vitro proinflammatory effect of urban particulate matter from different sites. J Biochem Mol Toxicol 27:87–97PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Heijink IH, de Bruin HG, Dennebos R et al (2016) Cigarette smoke-induced epithelial expression of WNT-5B: implications for COPD. Eur Respir J 48:504–515PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Shapiro DS (2002) Proteinases in chronic obstructive pulmonary disease. Biochem Soc Trans 30:98–102PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Segura-Valdez L, Pardo A, Gaxiola M et al (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117:684–694PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cataldo D, Munaut C, Noel A et al (2000) MMP-2- and MMP-9-linked gelatinolytic activity in the sputum from patients with asthma and chronic obstructive pulmonary disease. Int Arch Allergy Immunol 123:259–267PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wi DB (2005) Perspectives for cytokine antagonist therapy in COPD. Drug Discov Today 10:93–106CrossRefGoogle Scholar
  67. 67.
    Dahesia M (2005) Therapeutic inhibition of matrix metalloproteinase for the treatment of chronic obstructive pulmonary disease (COPD). Curr Med Res Opini 21:557–593Google Scholar
  68. 68.
    Betsuyaku T, Nishimura M, Takeyabu K et al (1999) Neutrophil granule proteins in bronchoalveolar lavage fluid from subjects with subclinical emphysema. Am J Respir Crit Care Med 159:1985–1991PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Shapiro SD (2005) COPD unwound. N Engl J Med 352:2016–2019PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Matsumoto H, Niimi A, Takemura M et al (2005) Relationship of airway wall thickening to an imbalance between matrix metalloproteinase-9 and its inhibition in asthma. Thorax 60:277–281PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Beeh KM, Beier J, Kornmann O et al (2003) Sputum matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and their molar ratio in patients with chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis and healthy subjects. Respir Med 97:634–639PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Russell RE, Culpitt SV, DeMatos C et al (2002) Release and activity of matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase- 1 by alveolar macrophages from patients with chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 26:602–609PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Wn N, Yinying D, Sun J et al (2007) Cigarette smoke stimulates matrix metalloproteinase-2 activity via EGR-1 in human lung fibroblasts. Am J Respir Cell Mol Biol 36:480–490CrossRefGoogle Scholar
  74. 74.
    Imai K, Dalal SS, Chen ES et al (2001) Human collagenase (matrix metalloproteinase-1) expression in the lungs of patients with emphysema. Am J Respir Crit Care Med 163:786–791PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Noe V, Fingeton B, Jacobs K et al (2001) Release of an invasion promoter E-cadherin fragment by Matrilysin and Stromolysin-1. J. Cell Sci 114:111–118Google Scholar
  76. 76.
    Steinhusen U, Weike J, Badok V et al (2001) Cleave and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Leclerc O, Lagente V, Planquois JM et al (2006) Involvement of MMP-12 and phosphodiesterase type 4 in cigarette smoke-induced inflammation in mice. Eur Respir J 27:1102–1109PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Porter S, Clark IM, Kevorkian L et al (2005) The ADAMTS metalloproteinases. Biochem J 386:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Seals DF, Courtneidge SA (2003) The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17:7–30PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Black RA, White JM (1998) ADAMs: focus on the protease domain. Curr Opin Cell Biol 10:654–659PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Rocks N, Paulissen G, El Hour M et al (2008) Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 90:369–379PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Gosman MM, Boezen HM, van Diemen CC et al (2007) A disintegrin and metalloprotease 33 and chronic obstructive pulmonary disease pathophysiology. Thorax 62:242–247PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Ju CR, Xia XZ, Chen RC (2007) Expressions of tumor necrosis factor-converting enzyme and ErbB3 in rats with chronic obstructive pulmonary disease. Chin Med J 120:1505–1510PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Shao MX, Nakanaga T, Nadel JA (2004) Cigarette smoke induces MUC5AC mucin overproduction via tumor necrosis factor-alpha-converting enzyme in human airway epithelial (NCIH292) cells. Am J Physiol Lung Cell Mol Physiol 287:L420–L427PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Siegel RL, Miller KD, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68:7–30PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Vandenbroucke RE, Dejonckheere E, Libert C (2011) A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J 38:1200–1214PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Esposito L, Conti D, Ailavajhala R et al (2010) Lung cancer: are we up to the challenge? Curr Genomics 11:513–518PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Church DF, Pryor WA (1985) Free-radical chemistry of cigarette smoke and its toxicological implications. Environ Health Perspect 64:111–126PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Tetley TD (1993) New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax 48:560–565PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Barnes PJ, Shapiro SD et al (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22:672–688PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Wagner S, Breyholz HJ, Faust A et al (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Jumper C, Cobos E, Lox C (2004) Determination of the serum matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase- 1 (TIMP-1) in patients with either advanced small-cell lung cancer or non-small-cell lung cancer prior to treatment. Respir Med 98:173–177PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Itoh T, Tanioka M, Matsuda H et al (1999) Experimental metastasis is suppressed in MMP-9-deficient mice. Clin Exp Metastasis 17:177–181PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Reichenberger F, Eickelberg O, Wyser C et al (2001) Distinct endobronchial expression of matrix-metalloproteinases (MMP) and their endogenous inhibitors in lung cancer. Swiss Med Wkly 131:273–279PubMedPubMedCentralGoogle Scholar
  96. 96.
    Kodate M, Kasai T, Hashimot H et al (1997) Expression of matrix metalloproteinase (gelatinase) in T1 adenocarcinoma of the lung. Pathol Int 47:461–469PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Pritchard SC, Nicolson MC, Lloret C et al (2001) Expression of matrix metalloproteinases 1, 2, 9 and their tissue inhibitors in stage II non-small cell lung cancer: implications for MMP inhibition therapy. Oncol Rep 8:421–424PubMedPubMedCentralGoogle Scholar
  98. 98.
    Ishikawa S, Takenaka K, Yanagihara K et al (2004) Matrix metalloproteinase-2 status in stromal fibroblasts, not in tumor cells, is a significant prognostic factor in non-small-cell lung cancer. Clin Cancer Res 10:6579–6585PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Itoh T, Tanioka M, Yoshida H et al (1998) Reduced angiogenesis and tumour progression in gelatinase A-deficient mice. Cancer Res 58:1048–1051PubMedPubMedCentralGoogle Scholar
  100. 100.
    Chetty C, Lakka SS, Bhoopathi P et al (2010) MMP-2 alters VEGF expression via aVb3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 127:1081–1095PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Thomas P, Khokha R, Shepherd FA et al (2000) Differential expression of matrix metalloproteinases and their inhibitors in non-small cell lung cancer. J Pathol 190:150–156PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Ylisirnio S, Hoyhtya M, Turpeenniemi-Hujanen T (2000) Serum matrix metalloproteinases-2, -9 and tissue inhibitors of metalloproteinases-1, -2 in lung cancer – TIMP-1 as a prognostic marker. Anticancer Res 20:1311–1316PubMedPubMedCentralGoogle Scholar
  103. 103.
    Passlick B, Sienel W, Seen-Hibler R et al (2000) Overexpression of matrix metalloproteinase 2 predicts unfavorable outcome in early-stage non-small cell lung cancer. Clin Cancer Res 6:3944–4398PubMedPubMedCentralGoogle Scholar
  104. 104.
    Herbst RS, Yano S, Kuniyasu H et al (2000) Differential expression of E-cadherin and type IV collagenase genes predicts outcome in patients with stage I non-small cell lung carcinoma. Clin. Cancer Res 6:790–797Google Scholar
  105. 105.
    Pan MR, Chuang LY, Hung WC (2001) Non-steroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 expression via repression of transcription in lung cancer cells. FEBS Lett 508:365–368PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tokuraku M, Sato H, Murakami S et al (1995) Activation of the precursor of gelatinase A/72 Kda Type-Iv collagenase/ Mmp-2 in lung carcinomas correlates with the express ion of membrane-type matrix metalloproteinase (Mt-Mmp) and with lymph-node metastasis. Int J Cancer 64:355–359PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Nielsen BS, Egeblad M, Rank F et al (2008) Matrix metalloproteinase 13 is induced in fibroblasts in polyomavirus middle T antigen-driven mammary carcinoma without influencing tumour progression. PLoS One 3:e2959PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Houghton AM, Grisolano JL, Baumann ML et al (2006) Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res 66:6149–6155PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Overall CM, Lopez-Otin C (2002) Strategies for MMP inhibition in cancer: innovations for the post-trial era. Nat Rev Cancer 2:657–672PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wagne S, Breyholz HJ, Faust A et al (2006) Molecular imaging of matrix metalloproteinases in vivo using small molecule inhibitors for SPECT and PET. Curr Med Chem 13:2819–2838CrossRefGoogle Scholar
  112. 112.
    Chen MH, Cui SX, Cheng YN et al (2008) Galloyl cyclic-imide derivative CH1104I inhibits tumour invasion through suppressing matrix metalloproteinase activity. Anti-Cancer Drugs 19:957–965PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Kasaoka T, Nishiyama H, Okada M et al (2008) Matrix metalloproteinase inhibitor, MMI270 (CGS27023A) inhibited hematogenic metastasis of B16 melanoma cells in both experimental and spontaneous metastasis models. Clin Exp Metastasis 25:827–834PubMedCrossRefGoogle Scholar
  114. 114.
    Lockhart AC, Braun RD, Yu D et al (2003) Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin Cancer Res 9:586–593PubMedGoogle Scholar
  115. 115.
    Leighl NB, Paz-Ares L, Douillard JY et al (2005) Randomized phase III study of matrix metalloproteinase inhibitor BMS-275291 in combination with paclitaxel and carboplatin in advanced nonsmall-cell lung cancer: National Cancer Institute of Canada, Clinical Trials Group Study BR.18. J Clin Oncol 23:2831–2839PubMedCrossRefGoogle Scholar
  116. 116.
    Iatropoulos MJ, Cerven DR, de George G et al (2008) Reduction by dietary matrix metalloproteinase inhibitor BAY 12-9566N of neoplastic development induced by diethylnitrosamine, N-nitrosodimethylamine, or 7,12-dimethylbenz(a)anthracene in rats. Drug Chem Toxicol 31:305–316PubMedCrossRefGoogle Scholar
  117. 117.
    Almholt K, Juncker-Jensen A, Laerum OD et al (2008) Metastasis is strongly reduced by the matrix metalloproteinase inhibitor galardin in the MMTV-PymT transgenic breast cancer model. Mol Cancer Ther 7:2758–2767PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Lange P, Parner J, Vestbo J et al (1998) A 15-year follow-up study of ventilatory function in adults with asthma. N Engl J Med 339:1194–1200PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bousquet J, Chanez P, Lacoste JY et al (1992) Asthma: a disease remodeling the airways. Allergy 47:3–11PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Cataldo DD, Gueders MM, Rocks N, Sounni NE et al (2003) Pathogenic role of matrix metalloproteases and their inhibitors in asthma and chronic obstructive pulmonary disease and therapeutic relevance of matrix metalloproteases inhibitors. Cell Mol Biol 49:875–884PubMedPubMedCentralGoogle Scholar
  121. 121.
    Vignola AM, Chanez P, Siena L et al (1998) Airways remodelling in asthma. Pulm Pharmacol Ther 11:359–367PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Gueders MM, Foidart JM, Noel A, Cataldo DD (2006) Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol 533:133–144PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Dahlen B, Shute J, Howarth P (1999) Immunohistochemical localization of the matrix metalloproteinases MMP-3 and MMP-9 within the airways in asthma. Thorax 54:590–596PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Cataldo DD, Gueders M, Munaut C et al (2004) Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases mRNA transcripts in the bronchial secretions of asthmatics. Lab Investig 84:418–424PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Suzuki R, Kato T, Miyazaki Y et al (2001) Matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases in sputum from patients with bronchial asthma. J Asthma 38:477–484PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Vignola AM, Riccobono L, Mirabella A et al (1998) Sputum metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio correlates with airflow obstruction in asthma and chronic bronchitis. Am J Respir Crit Care Med 158:1945–1950PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Yao PM, Maitre B, Delacour C et al (1997) Divergent regulation of 92-kDa gelatinase and TIMP-1 by HBECs in response to IL-1beta and TNF-alpha. Am J Phys 273:L866–L874Google Scholar
  128. 128.
    Johnatty RN, Taub DD, Reeder SP et al (1997) Cytokine and chemokine regulation of proMMP-9 and TIMP-1 production by human peripheral blood lymphocytes. J Immunol 158:2327–2333PubMedPubMedCentralGoogle Scholar
  129. 129.
    Mattos W, Lim S, Russell R, Jatakanon A et al (2002) Matrix metalloproteinase-9 expression in asthma: effect of asthma severity, allergen challenge, and inhaled corticosteroids. Chest 122:1543–1552PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Saren P, Welgus HG, Kovanen PT (1996) TNF-alpha and IL-1beta selectively induce expression of 92-kDa gelatinase by human macrophages. J Immunol 157:4159–4165PubMedPubMedCentralGoogle Scholar
  131. 131.
    Corcoran ML, Stetler-Stevenson WG, Brown PD et al (1992) Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J Biol Chem 267:51519Google Scholar
  132. 132.
    Mertz PM, DeWitt DL, Stetler-Stevenson WG et al (1994) Interleukin 10 suppression of monocyte prostaglandin H synthase2. Mechanism of inhibition of prostaglandin-dependent matrix metalloproteinase production. J Biol Chem 269:21322–21329PubMedGoogle Scholar
  133. 133.
    Cataldo DD, Tournoy KG, Vermaelen K et al (2002) Matrix metalloproteinase-9 deficiency impairs cellular infiltration and bronchial hyperresponsiveness during allergen-induced airway inflammation. Am J Pathol 161:491–498PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Watson AM, Benton AS, Rose MC et al (2010) Cigarette smoke alters tissue inhibitor of metalloproteinase 1 and matrix metalloproteinase 9 levels in the basolateral secretions of human asthmatic bronchial epithelium in vitro. J Investig Med 58:725–729PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Corry DB, Kiss A, Song LZ et al (2004) Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J 18:995–997PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    McMillan SJ, Kearley J, Campbell JD et al (2004) Matrixmetalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol 172:2586–2594PubMedCrossRefGoogle Scholar
  137. 137.
    Page K, Ledford JR, Zhou P et al (2009) A TLR2 agonist in German cockroach frass activates MMP-9 release and is protective against allergic inflammation in mice. J Immunol 183:3400–3408PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Rajah R, Nachajon RV, Collins MH et al (1999) Elevated levels of the IGF-binding protein protease MMP-1 in asthmatic airway smooth muscle. Am J Respir Cell Mol Biol 20:199–208PubMedCrossRefGoogle Scholar
  139. 139.
    Cataldo D, Munaut C, Noel A et al (2001) Matrix metalloproteinases and TIMP-1 production by peripheral blood granulocytes from COPD patients and asthmatics. Allergy 56:145–151PubMedCrossRefGoogle Scholar
  140. 140.
    Prikk K, Maisi P, Pirila E et al (2002) Airway obstruction correlates with collagenase-2 (MMP-8) expression and activation in bronchial asthma. Lab Investig 82:1535–1545PubMedCrossRefGoogle Scholar
  141. 141.
    Gueders MM, Balbin M, Rocks N et al (2005) Matrix metalloproteinase-8 deficiency promotes granulocytic allergen induced airway inflammation. J Immunol 175:2589–2597PubMedCrossRefGoogle Scholar
  142. 142.
    Todorova L, Bjermer L, Miller-Larsson A et al (2010) Relationship between matrix production by bronchial fibroblasts and lung function and AHR in asthma. Respir Med 104:1799–1808PubMedCrossRefGoogle Scholar
  143. 143.
    Wadsworth SJ, Atsuta R, McIntyre JO et al (2010) IL-13 and TH2 cytokine exposure triggers matrix metalloproteinase 7-mediated Fas ligand cleavage from bronchial epithelial cells. J Allergy Clin Immunol 126:366–374PubMedCrossRefGoogle Scholar
  144. 144.
    Gueders MM, Hirst SJ, Quesada-Calvo F et al (2010) Matrix metalloproteinase-19 deficiency promotes tenascin-C accumulation and allergen-induced airway inflammation. Am J Respir Cell Mol Biol 43:286–295PubMedCrossRefGoogle Scholar
  145. 145.
    Chiba Y, Yu Y, Sakai H et al (2007) Increase in the expression of matrix metalloproteinase-12 in the airways of rats with allergic bronchial asthma. Biol Pharm Bull 30:318–323PubMedCrossRefGoogle Scholar
  146. 146.
    Lanone S, Zheng T, Zhu Z et al (2002) Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and -12 in IL-13-induced inflammation and remodeling. J Clin Invest 110:463–474PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Xie S, Issa R, Sukkar MB et al (2005) Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir Res 6:148PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Oikonomidi S, Kostikas K, Tsilioni I et al (2009) Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr Med Chem 16:1214–1228PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Kumagai K, Ohno I, Okada S et al (1999) Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol 162:4212–4219PubMedGoogle Scholar
  150. 150.
    Bruce C, Thomas PS (2005) The effect of marimastat, a metalloprotease inhibitor, on allergen-induced asthmatic hyper-reactivity. Toxicol Appl Pharmacol 205:126–132PubMedCrossRefGoogle Scholar
  151. 151.
    Corry DB, Rishi K, Kanellis J et al (2002) Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nat Immunol 3:347–353PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Lee YC, Song CH, Lee HB et al (2001) A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J Allergy Clin Immunol 108:1021–1026PubMedCrossRefGoogle Scholar
  153. 153.
    Lee KS, Jin SM, Kim SS et al (2004) Doxycycline reduces airway inflammation and hyperresponsiveness in a murine model of toluene diisocyanate-induced asthma. J Allergy Clin Immunol 113:902–909PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Shapiro SD, Kobayashi DK, Ley TJ (1993) Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 268:23824–23829PubMedPubMedCentralGoogle Scholar
  155. 155.
    Bosse M, Chakir J, Rouabhia M et al (1999) Serum matrix metalloproteinase-9: tissue inhibitor of metalloproteinase-1 ratio correlates with steroid responsiveness in moderate to severe asthma. Am J Respir Crit Care Med 159:596–602PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Suzuki R, Miyazaki Y, Takagi K et al (2004) Matrix metalloproteinases in the pathogenesis of asthma and COPD: implications for therapy. Treat Respir Med 3:17–27PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Xie S, Issa R, Sukkar MB et al (2005) Induction and regulation of matrix metalloproteinase-12 in human airway smooth muscle cells. Respir Res 6:148PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Corbel M, Boichot E, Lagente V (2000) Role of gelatinases MMP-2 and MMP-9 in tissue remodeling following acute lung injury. Braz J Med Biol Res 33:749–754PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Warner RL, Beltran L, Younkin EM et al (2001) Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Respir Cell Mol Biol 24:537–544PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Oikonomidi S, Kostikas K, Tsilioni I et al (2009) Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr Med Chem 16:1214–1228PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Shapiro SD (1998) Matrix metalloproteinase degradation of extracellular matrix: biological consequences. Curr Opin Cell Biol 10:602–608PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Gibbs DF, Shanley TP, Warner RL et al (1999) Role of matrix metalloproteinases in models of macrophage-dependent acute lung injury. Evidence for alveolar macrophage as source of proteinases. Am J Respir Cell Mol Biol 20:1145–1154PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Fligiel SE, Standiford T, Fligiel HM et al (2006) Matrix metalloproteinases and matrix metalloproteinase inhibitors in acute lung injury. Hum Pathol 37:422–430PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Kong MY, Gaggar A, Li Y et al (2009) Matrix metalloproteinase activity in paediatric acute lung injury. Int J Med Sci 6:9–17PubMedCrossRefGoogle Scholar
  165. 165.
    Lanchou J, Corbel M, Tanguy M et al (2003) Imbalance between matrix metalloproteinases (MMP-9 and MMP-2) and tissue inhibitors of metalloproteinases (TIMP-1 and TIMP-2) in acute respiratory distress syndrome patients. Cri Care Me 31:536–542CrossRefGoogle Scholar
  166. 166.
    Matute-Bello G, Frevert CW, Martin TR (2008) Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol 295:L379–L399PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Vandenbroucke RE, Dejonckheere E, Libert C (2011) A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J 38:1200–1214PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Owen CA, Hu Z, Lopez-Otin C et al (2004) Membrane-bound matrix metalloproteinase-8 on activated polymorphonuclear cells is a potent, tissue inhibitor of metalloproteinase-resistant collagenase and serpinase. J Immunol 172:7791–7803PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Quintero PA, Knolle MD, Cala LF et al (2010) Matrix metalloproteinase-8 inactivates macrophage inflammatory protein-1 alpha to reduce acute lung inflammation and injury in mice. J Immunol 184:1575–1588PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Brass DM, Hollingsworth JW, Cinque M et al (2008) Chronic LPS inhalation causes emphysema-like changes in mouse lung that are associated with apoptosis. Am J Respir Cell Mol Biol 39:584–590PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Kim JH, Suk MH, Yoon DW et al (2006) Inhibition of matrix metalloproteinase-9 prevents neutrophilic inflammation in ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 291:L580–L587PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Yoon HK, Cho HY, Kleeberger SR (2007) Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. Environ Health Perspect 115:1557–1563PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Sen AI, Shiomi T, Okada Y et al (2010) Deficiency of matrix metalloproteinase-13 increases inflammation after acute lung injury. Exp Lung Res 36:615–624PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Warner RL, Beltran L, Younkin EM et al (2001) Role of stromelysin 1 and gelatinase B in experimental acute lung injury. Am J Respir Cell Mol Biol 24:537–544PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Carney DE, Lutz CJ, Picone AL et al (1999) Matrix metalloproteinase inhibitor prevents acute lung injury after cardiopulmonary bypass. Circulation 100:400–406PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Steinberg J, Halter J, Schiller HJ et al (2003) Metalloproteinase inhibition reduces lung injury and improves survival after cecal ligation and puncture in rats. J Surg Res 111:185–195PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Carney DE, McCann UG, Schiller HJ et al (2001) Metalloproteinase inhibition prevents acute respiratory distress syndrome. J Surg Res 99:245–252PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Crouch E (1990) Pathobiology of pulmonary fibrosis. Am J Phys 259:L159–L184Google Scholar
  179. 179.
    Katzenstein ALA, Myers JL (1998) Idiopathic pulmonary fibrosis: clinical relevance of pathologic classification. Am J Respir Crit Care Med 157:1301–1315PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Morimoto Y, Kim H, Oyabu T et al (2005) Effect of long-term inhalation of toner on extracellular matrix in the lungs of rats in vivo. Inhal Toxicol 17:153–159PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Selman M, Ruiz V, Cabrera S et al (2000) TIMP-1,-2,-3, and-4 in idiopathic pulmonary fibrosis. A prevailing nondegradative lung microenvironment? Am J Physiol Lung Cell Mol Physiol 279:L562–L574PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Swiderski RE, Dencoff JE, Floerchinger CS et al (1998) Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis. Am J Pathol 152:821–828PubMedPubMedCentralGoogle Scholar
  183. 183.
    Yaguchi T, Fukuda Y, Ishizaki M et al (1998) Immunohistochemical and gelatin zymography studies for matrix metalloproteinases in bleomycin-induced pulmonary fibrosis. Pathol Int 48:954–963PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Pardo A, Selman M (2006) Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc Am Thorac Soc 3:383–388PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Lemjabbar H, Gosset P, Lechapt-Zalcman E et al (1999) Overexpression of alveolar macrophage gelatinase B (MMP-9) in patients with idiopathic pulmonary fibrosis: effects of steroid and immunosuppressive treatment. Am J Respir Cell Mol Biol 20:903–913PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Cosgrove GP, Schwarz MI, Geraci MW et al (2002) Overexpression of matrix metalloproteinase-7 in pulmonary fibrosis. Chest 121:25S–26SPubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Zuo FR, Kaminski N, Eugui E et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci U S A 99:6292–6297PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Oikonomidi S, Kostikas K, Tsilioni I et al (2009) Matrix metalloproteinases in respiratory diseases: from pathogenesis to potential clinical implications. Curr Med Chem 16:1214–1228PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Yamashita CM, Dolgonos L, Zemans RL et al (2011) Matrix metalloproteinase 3 is a mediator of pulmonary fibrosis. Am J Pathol 179:1733–1745PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Cabrera S, Selman M, Lozano-Bolaños A et al (2013) Gene expression profiles reveal molecular mechanisms involved in the progression and resolution of bleomycin-induced lung fibrosis. Am J Physiol Lung Cell Mol Physiol 304:L593–L601PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    García-Prieto E, González-López A, Cabrera S et al (2010) Resistance to bleomycin-induced lung fibrosis in MMP-8 deficient mice is mediated by interleukin-10. PLoS One 5:e13242PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Nkyimbeng T, Ruppert C, Shiomi T et al (2013) Pivotal role of matrix metalloproteinase 13 in extracellular matrix turnover in idiopathic pulmonary fibrosis. PLoS One 8:e73279PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Flechsig P, Hartenstein B, Teurich S et al (2010) Loss of matrix metalloproteinase-13 attenuates murine radiation-induced pulmonary fibrosis. Int J Radiat Oncol Biol Phys 77:582–590PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Manoury B, Nenan S, Guenon I et al (2006) Macrophage metalloelastase (MMP-12) deficiency does not alter bleomycin-induced pulmonary fibrosis in mice. J Inflamm (Lond) 3:2CrossRefGoogle Scholar
  195. 195.
    Gharib SA, Johnston LK, Huizar I (2014) MMP28 promotes macrophage polarization toward M2 cells and augments pulmonary fibrosis. J Leukoc Biol 95:9–18PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Corbel M, Belleguic C, Boichot E et al (2002) Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol 18:51–61PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Rowe SM, Miller S, Sorscher EJ (2005) Cystic fibrosis. N Engl J Med 352:1992–2001PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Gaggar A, Hector A, Bratcher PE et al (2011) The role of matrix metalloproteinases in cystic fibrosis lung disease. Eur Respir J 38:721–727PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Gaggar A, Li Y, Weathington N et al (2007) Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. Am J Physiol Lung Cell Mol Physiol 293:L96–L104PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Ratjen F, Hartog CM, Paul K et al (2002) Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax 57:930–934PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Gaggar A, Jackson PL, Noerager BD et al (2008) A novel proteolytic cascade generates an extracellular matrix-derived chemoattractant in chronic neutrophilic inflammation. J Immunol 180:5662–5669PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Van den Steen PE, Proost P, Wuyts A et al (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-a and leaves RANTES and MCP-2 intact. Blood 96:2673–2681PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Roderfeld M, Rath T, Schulz R et al (2009) Serum matrix metalloproteinases in adult CF patients: relation to pulmonary exacerbation. J Cyst Fibros 8:338–347PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Geraghty P, Rogan MP, Greene CM et al (2007) Neutrophil elastase upregulates cathepsin B and matrix metalloprotease-2 expression. J Immunol 178:5871–5878PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Peterson-Carmichael SL, Harris WT, Goel R et al (2009) Association of lower airway inflammation with physiologic findings in young children with cystic fibrosis. Pediatr Pulmonol 44:503–511PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Dunsmore SE, Saarialho-Kere UK, Roby JD et al (1998) Matrilysin expression and function in airway epithelium. J Clin Invest 102:1321–1331PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Schubert SC, Trojanek JB, Diemer S et al (2009) Airways surface liquid depletion causes MMP-12 dependent emphysema in bENaC-overexpressing mice. J Cyst Fibros 8(Suppl 2):S53CrossRefGoogle Scholar
  208. 208.
    Cobos-Correa A, Trojanek JB, Diemer S et al (2009) Membrane-bound FRET probe visualizes MMP12 activity in pulmonary inflammation. Nat Chem Biol 5:628–630PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Hanemaaijer R, Visser H, Koolwijk P et al (1998) Inhibition of MMP synthesis by doxycycline and chemically modified tetracyclines (CMTs) in human endothelial cells. Adv Dent Res 12:114–118PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Kaplan G, Post FA, Moreira AL et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71:7099–7108PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Chang JC, Wysocki A, Tchou-Wong KM et al (1996) Effect of mycobacterium tuberculosis and its components on macrophages and the release of matrix metalloproteinases. Thorax 51:306–311PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Price NM, Farrar J, Tran TT et al (2001) Identification of a matrix-degrading phenotype in human tuberculosis in vitro and in vivo. J Immunol 166:4223–4230PubMedCrossRefPubMedCentralGoogle Scholar
  213. 213.
    Matsuura E, Umehara F, Hashiguchi T et al (2000) Marked increase of matrix metalloproteinase 9 in cerebrospinal fluid of patients with fungal or tuberculous meningoencephalitis. J Neurol Sci 173:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Elkington PT, Nuttall RK, Boyle JJ et al (2005) Mycobacterium tuberculosis, but not vaccine BCG, specifically upregulates matrix metalloproteinase-1. Am J Respir Crit Care Med 172:1596–1604PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Coussens A, Timms PM, Boucher BJ et al (2009) 1alpha, 25-dihydroxyvitamin D3 inhibits matrix metalloproteinases induced by Mycobacterium tuberculosis infection. Immunology 127:539–548PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    Elkington PT, Emerson JE, Lopez-Pascua LD et al (2005) Mycobacterium tuberculosis up-regulates matrix metalloproteinase-1 secretion from human airway epithelial cells via a p38 MAPK switch. J Immunol 175:5333–5340PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Elkington PT, Green JA, Emerson JE et al (2007) Synergistic upregulation of epithelial cell matrix metalloproteinase-9 secretion in tuberculosis. Am J Respir Cell Mol Biol 37:431–437PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Elkington PT, D’Armiento JM, Friedland JS (2011) Tuberculosis immunopathology: the neglected role of extracellular matrix destruction. Sci Transl Med 3:71ps6PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Thwaites GE, Nguyen DB, Nguyen HD et al (2004) Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351:1741–1751PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Green JA, Tran CT, Farrar JJ et al (2009) Dexamethasone, cerebrospinal fluid matrix metalloproteinase concentrations and clinical outcomes in tuberculous meningitis. PLoS One 4:e7277PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Coussens LM, Fingleton B, Matrisian LM (2002) Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 295:2387–2392PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Fernandez Fabrellas E (2007) Epidemiology of sarcoidosis. Arch Bronconeumol 43:92–100PubMedCrossRefPubMedCentralGoogle Scholar
  223. 223.
    Muller-Quernheim J (1998) Sarcoidosis: immunopathogenetic concepts and their clinical application. Eur Respir J 12:716–738PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Fireman E, Kraiem Z, Sade O et al (2002) Induced sputum-retrieved matrix metalloproteinase 9 and tissue metalloproteinase inhibitor 1 in granulomatous diseases. Clin Exp Immunol 130:331–337PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Fireman EM, Topilsky MR (1994) Sarcoidosis: an organized pattern of reaction from immunology to therapy. Immunol Today 15:199–201PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Newman LS, Rose CS, Maier LA (1997) Sarcoidosis. N Engl J Med 336:1224–1234PubMedCrossRefPubMedCentralGoogle Scholar
  227. 227.
    John M, Oltmann U, Fietze I et al (2002) Increased production of matrix metalloproteinase-2 in alveolar macrophages and regulation by interleukin-10 in patients with acute pulmonary sarcoidosis. Exp Lung Res 28:55–68PubMedCrossRefPubMedCentralGoogle Scholar
  228. 228.
    Henry MT, McMahon K, Mackarel AJ et al (2002) Matrix metalloproteinases and tissue inhibitor of metalloproteinase-1 in sarcoidosis and IPF. Eur Respir J 20:1220–1227PubMedCrossRefPubMedCentralGoogle Scholar
  229. 229.
    Gonzalez AA, Segura AM, Horiba K et al (2002) Matrix metalloproteinases and their tissue inhibitors in the lesions of cardiac and pulmonary sarcoidosis: an immunohistochemical study. Hum Pathol 33:1158–1164PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Onishi H, Ichimiya S, Yanai K et al (2018) RBPJ and MAML3: potential therapeutic targets for small cell lung cancer. Anticancer Res 38:4543–4547PubMedCrossRefPubMedCentralGoogle Scholar
  231. 231.
    Ramalingam V, Varunkumar K, Ravikumar V et al (2018) p53 mediated transcriptional regulation of long non-coding RNA by 1-hydroxy-1-norresistomycin triggers intrinsic apoptosis in adenocarcinoma lung cancer. Chem Biol Interact 287:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  232. 232.
    Parasaram V, Nosoudi N, LeClair RJ (2016) Targeted drug delivery to emphysematous lungs: inhibition of MMPs by doxycycline loaded nanoparticles. Pulm Pharmacol Ther 39:64–73PubMedPubMedCentralCrossRefGoogle Scholar
  233. 233.
    Karakiulakis G, Roth M (2012) Muscarinic receptors and their antagonists in COPD: anti-inflammatory and antiremodeling effects. Mediat Inflamm 2012:409580CrossRefGoogle Scholar
  234. 234.
    Neto-Neves EM, Kiss T, Muhl D et al (2013) Matrix metalloproteinases as drug targets in acute pulmonary embolism. Curr Drug Targets 14:344–352PubMedGoogle Scholar
  235. 235.
    Roy SK, Kendrick D, Sadowitz BD et al (2011) Jack of all trades: pleiotropy and the application of chemically modified tetracycline-3 in sepsis and the acute respiratory distress syndrome (ARDS). Pharmacol Res 64:580–589PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Jaganmay Sarkar
    • 1
  • Tapati Chakraborti
    • 1
  • Sajal Chakraborti
    • 1
    Email author
  1. 1.Department of Biochemistry and BiophysicsUniversity of KalyaniKalyaniIndia

Personalised recommendations