Advertisement

Regulation of Oxidative Stress by Nitric Oxide Defines Lung Development and Diseases

  • Suvendu Giri
  • Sumukh Thakar
  • Syamantak Majumder
  • Suvro ChatterjeeEmail author
Chapter

Abstract

Development and maturation of the lung airways primarily take place in two different phases: first during embryonic days and second during postnatal days. During postnatal development, rapid angiogenesis and alveolarization are necessary to attain the capacity of the lung to support the need of the baby. During lung development, alteration in ROS level may significantly compromise maturation of the alveolar structure. We have employed a unique approach to achieve alteration in ROS level in the chick embryos to ascertain ROS function in early lung development. We have used a known ROS quenching nitric oxide (NO) donor and a ROS inducer called thalidomide, a known teratogen. Using next-generation high-throughput sequencing (NGS) analysis, we have performed the transcriptomic analysis of the NO- and thalidomide-treated chick embryos. Using STRING database, we have identified a set of lung-associated developmental genes that were significantly altered upon NO and/or thalidomide treatment and thus providing evidence that interplaying with cellular ROS level could possible alter the set of genes involved in early lung development. In conclusion, the current study shed light that alteration of ROS level could modulate the expression of early genes which are required for normal lung development and maturation.

Keywords

Alveolarization Angiogenesis Lung Nitric oxide Reactive oxygen species Thalidomide 

Notes

Acknowledgement

This work was partially supported by an Additional Competitive Research Grant from BITS-Pilani to SM (PLN/AD/2017-18/02), a grant from the University Grant Commission-Faculty Recharge Programme (UGC-FRP), Government of India, to SC, and by DST-INSPIRE fellowship programme to SG.

References

  1. 1.
    Hislop A (2005) Developmental biology of the pulmonary circulation. Paediatr Respir Rev 6:35–43PubMedCrossRefGoogle Scholar
  2. 2.
    Tang JR, Markham NE, Lin YJ, McMurtry IF, Maxey A, Kinsella JP, Abman SH (2004) Inhaled nitric oxide attenuates pulmonary hypertension and improves lung growth in infant rats after neonatal treatment with a VEGF receptor inhibitor. Am J Physiol Lung Cell Mol Physiol 287:L344–L351PubMedCrossRefGoogle Scholar
  3. 3.
    Wedgwood S, Steinhorn RH (2014) Role of reactive oxygen species in neonatal pulmonary vascular disease. Antioxid Redox Signal 21:1926–1942PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Domej W, Oettl K, Renner W (2014) Oxidative stress and free radicals in COPD--implications and relevance for treatment. Int J Chron Obstruct Pulmon Dis 9:1207–1224PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Boukhenouna S, Wilson MA, Bahmed K, Kosmider B (2018) Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med Cell Longev 2018:5730395CrossRefGoogle Scholar
  6. 6.
    Perrone S, Tataranno ML, Buonocore G (2012) Oxidative stress and bronchopulmonary dysplasia. J Clin Neonatol 1:109–114PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105:140–156PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Tschanz SA, Salm LA, Roth-Kleiner M, Barre SF, Burri PH, Schittny JC (2014) Rat lungs show a biphasic formation of new alveoli during postnatal development. J Appl Physiol (Bethesda, Md: 1985) 117:89–95CrossRefGoogle Scholar
  9. 9.
    Hofmann W (1982) Mathematical model for the postnatal growth of the human lung. Respir Physiol 49:115–129PubMedCrossRefGoogle Scholar
  10. 10.
    Fox WW, Schwartz JG, Shaffer TH (1978) Pulmonary physiotherapy in neonates: physiologic changes and respiratory management. J Pediatr 92:977–981PubMedCrossRefGoogle Scholar
  11. 11.
    Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM (1977) Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat 123:649–660PubMedPubMedCentralGoogle Scholar
  12. 12.
    Burri PH, Gehr P, Muller K, Weibel ER (1976) Adaptation of the growing lung to increased VO2. I. IDPN as inducer of hyperactivity. Respir Physiol 28:129–140PubMedCrossRefGoogle Scholar
  13. 13.
    Barker PM, Walters DV, Markiewicz M, Strang LB (1991) Development of the lung liquid reabsorptive mechanism in fetal sheep: synergism of triiodothyronine and hydrocortisone. J Physiol 433:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB (2014) Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20:1126–1167PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Arango Duque G, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 5:491PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Tkaczyk J, Vizek M (2007) Oxidative stress in the lung tissue--sources of reactive oxygen species and antioxidant defence. Prague Med Rep 108:105–114PubMedGoogle Scholar
  17. 17.
    Wedgwood S, Lakshminrusimha S, Czech L, Schumacker PT, Steinhorn RH (2013) Increased p22(phox)/Nox4 expression is involved in remodeling through hydrogen peroxide signaling in experimental persistent pulmonary hypertension of the newborn. Antioxid Redox Signal 18:1765–1776PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Gerber HP, Hillan KJ, Ryan AM, Kowalski J, Keller GA, Rangell L, Wright BD, Radtke F, Aguet M, Ferrara N (1999) VEGF is required for growth and survival in neonatal mice. Development 126:1149–1159PubMedGoogle Scholar
  19. 19.
    Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987PubMedCrossRefGoogle Scholar
  20. 20.
    Dikalova AE, Gongora MC, Harrison DG, Lambeth JD, Dikalov S, Griendling KK (2010) Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299:H673–H679PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Carnesecchi S, Deffert C, Pagano A, Garrido-Urbani S, Metrailler-Ruchonnet I, Schappi M, Donati Y, Matthay MA, Krause KH, Barazzone Argiroffo C (2009) NADPH oxidase-1 plays a crucial role in hyperoxia-induced acute lung injury in mice. Am J Respir Crit Care Med 180:972–981PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Berkelhamer SK, Kim GA, Radder JE, Wedgwood S, Czech L, Steinhorn RH, Schumacker PT (2013) Developmental differences in hyperoxia-induced oxidative stress and cellular responses in the murine lung. Free Radic Biol Med 61:51–60PubMedCrossRefGoogle Scholar
  23. 23.
    Pendyala S, Moitra J, Kalari S, Kleeberger SR, Zhao Y, Reddy SP, Garcia JG, Natarajan V (2011) Nrf2 regulates hyperoxia-induced Nox4 expression in human lung endothelium: identification of functional antioxidant response elements on the Nox4 promoter. Free Radic Biol Med 50:1749–1759PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Develop Dynam 217:159–169CrossRefGoogle Scholar
  25. 25.
    Norton KA, Popel AS (2016) Effects of endothelial cell proliferation and migration rates in a computational model of sprouting angiogenesis. Sci Rep 6:36992PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Han RN, Stewart DJ (2006) Defective lung vascular development in endothelial nitric oxide synthase-deficient mice. Trends Cardiovasc Med 16:29–34PubMedCrossRefGoogle Scholar
  27. 27.
    Ng YS, Rohan R, Sunday ME, Demello DE, D'Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Develop Dynam 220:112–121CrossRefGoogle Scholar
  28. 28.
    Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Seedorf G, Metoxen AJ, Rock R, Markham N, Ryan S, Vu T, Abman SH (2016) Hepatocyte growth factor as a downstream mediator of vascular endothelial growth factor-dependent preservation of growth in the developing lung. Am J Physiol Lung Cell Mol Physiol 310:L1098–L1110PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    DeLisser HM, Helmke BP, Cao G, Egan PM, Taichman D, Fehrenbach M, Zaman A, Cui Z, Mohan GS, Baldwin HS, Davies PF, Savani RC (2006) Loss of PECAM-1 function impairs alveolarization. J Biol Chem 281:8724–8731PubMedCrossRefGoogle Scholar
  31. 31.
    D'Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:d1609–d1623PubMedCrossRefGoogle Scholar
  32. 32.
    Bhandari V, Choo-Wing R, Chapoval SP, Lee CG, Tang C, Kim YK, Ma B, Baluk P, Lin MI, McDonald DM, Homer RJ, Sessa WC, Elias JA (2006) Essential role of nitric oxide in VEGF-induced, asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci U S A 103:11021–11026PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607PubMedCrossRefGoogle Scholar
  34. 34.
    D'Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:d1609–d1623PubMedCrossRefGoogle Scholar
  35. 35.
    Kumar P, Kasiviswanathan D, Sundaresan L, Kathirvel P, Veeriah V, Dutta P, Sankaranarayanan K, Gupta R, Chatterjee S (2016) Harvesting clues from genome wide transcriptome analysis for exploring thalidomide mediated anomalies in eye development of chick embryo: nitric oxide rectifies the thalidomide mediated anomalies by swinging back the system to normal transcriptome pattern. Biochimie 121:253–267PubMedCrossRefGoogle Scholar
  36. 36.
    Modepalli V, Kumar A, Sharp JA, Saunders NR, Nicholas KR, Lefevre C (2018) Gene expression profiling of postnatal lung development in the marsupial gray short-tailed opossum (Monodelphis domestica) highlights conserved developmental pathways and specific characteristics during lung organogenesis. BMC Genomics 19:732PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bochkov YA, Watters K, Ashraf S, Griggs TF, Devries MK, Jackson DJ, Palmenberg AC, Gern JE (2015) Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication. Proc Natl Acad Sci U S A 112:5485–5490PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lee MK, Hong Y, Kim SY, Kim WJ, London SJ (2017) Epigenome-wide association study of chronic obstructive pulmonary disease and lung function in Koreans. Epigenomics 9:971–984PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kerstjens-Frederikse WS, Bongers EM, Roofthooft MT, Leter EM, Douwes JM, Van Dijk A, Vonk-Noordegraaf A, Dijk-Bos KK, Hoefsloot LH, Hoendermis ES, Gille JJ, Sikkema-Raddatz B, Hofstra RM, Berger RM (2013) TBX4 mutations (small patella syndrome) are associated with childhood-onset pulmonary arterial hypertension. J Med Genet 50:500–506PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Fagerberg L, Hallstrom BM, Oksvold P, Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S, Danielsson A, Edlund K, Asplund A, Sjostedt E, Lundberg E, Szigyarto CA, Skogs M, Takanen JO, Berling H, Tegel H, Mulder J, Nilsson P, Schwenk JM, Lindskog C, Danielsson F, Mardinoglu A, Sivertsson A, von Feilitzen K, Forsberg M, Zwahlen M, Olsson I, Navani S, Huss M, Nielsen J, Ponten F, Uhlen M (2014) Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteom MCP 13:397–406CrossRefGoogle Scholar
  41. 41.
    Wang IM, Stepaniants S, Boie Y, Mortimer JR, Kennedy B, Elliott M, Hayashi S, Loy L, Coulter S, Cervino S, Harris J, Thornton M, Raubertas R, Roberts C, Hogg JC, Crackower M, O'Neill G, Pare PD (2008) Gene expression profiling in patients with chronic obstructive pulmonary disease and lung cancer. Am J Respir Crit Care Med 177:402–411PubMedCrossRefGoogle Scholar
  42. 42.
    Poppinga WJ, Heijink IH, Holtzer LJ, Skroblin P, Klussmann E, Halayko AJ, Timens W, Maarsingh H, Schmidt M (2015) A-kinase-anchoring proteins coordinate inflammatory responses to cigarette smoke in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 308:L766–L775PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Feild JA, Zhang L, Brun KA, Brooks DP, Edwards RM (1999) Cloning and functional characterization of a sodium-dependent phosphate transporter expressed in human lung and small intestine. Biochem Biophys Res Commun 258:578–582PubMedCrossRefGoogle Scholar
  44. 44.
    Huqun, Izumi, S., Miyazawa, H., Ishii, K., Uchiyama, B., Ishida, T., Tanaka, S., Tazawa, R., Fukuyama, S., Tanaka, T., Nagai, Y., Yokote, A., Takahashi, H., Fukushima, T., Kobayashi, K., Chiba, H., Nagata, M., Sakamoto, S., Nakata, K., Takebayashi, Y., Shimizu, Y., Kaneko, K., Shimizu, M., Kanazawa, M., Abe, S., Inoue, Y., Takenoshita, S., Yoshimura, K., Kudo, K., Tachibana, T., Nukiwa, T., and Hagiwara, K. (2007) Mutations in the SLC34A2 gene are associated with pulmonary alveolar microlithiasis, Am J Respir Crit Care Med 175, 263–268PubMedCrossRefGoogle Scholar
  45. 45.
    LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, Rokkam D, Sweerus KA, Dobbs LG, Ballard PL, Frank JA (2014) Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol 51:550–558PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Yang Z, Wang Y, Fang J, Chen F, Liu J, Wu J, Wang Y (2010) Expression and aberrant promoter methylation of Wnt inhibitory factor-1 in human astrocytomas. J Exper Clin Cancer Res CR29 26Google Scholar
  47. 47.
    Xu B, Chen C, Chen H, Zheng SG, Bringas P Jr, Xu M, Zhou X, Chen D, Umans L, Zwijsen A, Shi W (2011) Smad1 and its target gene Wif1 coordinate BMP and Wnt signaling activities to regulate fetal lung development. Development 138:925–935PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Schott JJ, Benson DW, Basson CT, Pease W, Silberbach GM, Moak JP, Maron BJ, Seidman CE, Seidman JG (1998) Congenital heart disease caused by mutations in the transcription factor NKX2-5. Science (New York, NY) 281:108–111CrossRefGoogle Scholar
  49. 49.
    Mommersteeg MT, Brown NA, Prall OW, de Gier-de Vries C, Harvey RP, Moorman AF, Christoffels VM (2007) Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circ Res 101:902–909PubMedCrossRefGoogle Scholar
  50. 50.
    Krude H, Schutz B, Biebermann H, von Moers A, Schnabel D, Neitzel H, Tonnies H, Weise D, Lafferty A, Schwarz S, DeFelice M, von Deimling A, van Landeghem F, DiLauro R, Gruters A (2002) Choreoathetosis, hypothyroidism, and pulmonary alterations due to human NKX2-1 haploinsufficiency. J Clin Invest 109:475–480PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Li Y, Xiao X, Ji X, Liu B, Amos CI (2015) RNA-seq analysis of lung adenocarcinomas reveals different gene expression profiles between smoking and nonsmoking patients. Tumour Biol 36:8993–9003PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kubo A, Yuba-Kubo A, Tsukita S, Tsukita S, Amagai M (2008) Sentan: a novel specific component of the apical structure of vertebrate motile cilia. Mol Biol Cell 19:5338–5346PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Konishi S, Gotoh S, Tateishi K, Yamamoto Y, Korogi Y, Nagasaki T, Matsumoto H, Muro S, Hirai T, Ito I, Tsukita S, Mishima M (2016) Directed induction of functional multi-ciliated cells in proximal airway epithelial spheroids from human pluripotent stem cells. Stem Cell Reports 6:18–25PubMedCrossRefGoogle Scholar
  54. 54.
    de Saint-Vis B, Vincent J, Vandenabeele S, Vanbervliet B, Pin JJ, Ait-Yahia S, Patel S, Mattei MG, Banchereau J, Zurawski S, Davoust J, Caux C, Lebecque S (1998) A novel lysosome-associated membrane glycoprotein, DC-LAMP, induced upon DC maturation, is transiently expressed in MHC class II compartment. Immunity 9:325–336PubMedCrossRefGoogle Scholar
  55. 55.
    Kho AT, Sharma S, Qiu W, Gaedigk R, Klanderman B, Niu S, Anderson C, Leeder JS, Weiss ST, Tantisira KG (2013) Vitamin D related genes in lung development and asthma pathogenesis. BMC Med Genet 6:47Google Scholar
  56. 56.
    Okubo T, Hogan BL (2004) Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 3:11PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J (2009) WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell 138:51–62PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Roy MG, Livraghi-Butrico A, Fletcher AA, McElwee MM, Evans SE, Boerner RM, Alexander SN, Bellinghausen LK, Song AS, Petrova YM, Tuvim MJ, Adachi R, Romo I, Bordt AS, Bowden MG, Sisson JH, Woodruff PG, Thornton DJ, Rousseau K, De la Garza MM, Moghaddam SJ, Karmouty-Quintana H, Blackburn MR, Drouin SM, Davis CW, Terrell KA, Grubb BR, O'Neal WK, Flores SC, Cota-Gomez A, Lozupone CA, Donnelly JM, Watson AM, Hennessy CE, Keith RC, Yang IV, Barthel L, Henson PM, Janssen WJ, Schwartz DA, Boucher RC, Dickey BF, Evans CM (2014) Muc5b is required for airway defence. Nature 505:412–416PubMedCrossRefGoogle Scholar
  59. 59.
    Chung KF, Caramori G, Groneberg DA (2004) Airway obstruction in chronic obstructive pulmonary disease. N Engl J Med 351:1459–1461; author reply 1459–1461PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang Y, Noth I, Garcia JG, Kaminski N (2011) A variant in the promoter of MUC5B and idiopathic pulmonary fibrosis. N Engl J Med 364:1576–1577PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bonnelykke K, Sleiman P, Nielsen K, Kreiner-Moller E, Mercader JM, Belgrave D, den Dekker HT, Husby A, Sevelsted A, Faura-Tellez G, Mortensen LJ, Paternoster L, Flaaten R, Molgaard A, Smart DE, Thomsen PF, Rasmussen MA, Bonas-Guarch S, Holst C, Nohr EA, Yadav R, March ME, Blicher T, Lackie PM, Jaddoe VW, Simpson A, Holloway JW, Duijts L, Custovic A, Davies DE, Torrents D, Gupta R, Hollegaard MV, Hougaard DM, Hakonarson H, Bisgaard H (2014) A genome-wide association study identifies CDHR3 as a susceptibility locus for early childhood asthma with severe exacerbations. Nat Genet 46:51–55PubMedCrossRefGoogle Scholar
  62. 62.
    Hatanaka T, Nakanishi T, Huang W, Leibach FH, Prasad PD, Ganapathy V, Ganapathy ME (2001) Na+ − and Cl- -coupled active transport of nitric oxide synthase inhibitors via amino acid transport system B(0,+). J Clin Invest 107:1035–1043PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Berg T, Hegelund Myrback T, Olsson M, Seidegard J, Werkstrom V, Zhou XH, Grunewald J, Gustavsson L, Nord M (2014) Gene expression analysis of membrane transporters and drug-metabolizing enzymes in the lung of healthy and COPD subjects. Pharmacol Res Perspect 2:e00054PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Steele MP, Luna LG, Coldren CD, Murphy E, Hennessy CE, Heinz D, Evans CM, Groshong S, Cool C, Cosgrove GP, Brown KK, Fingerlin TE, Schwarz MI, Schwartz DA, Yang IV (2015) Relationship between gene expression and lung function in idiopathic interstitial pneumonias. BMC Genomics 16:869PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Becker-Heck A, Zohn IE, Okabe N, Pollock A, Lenhart KB, Sullivan-Brown J, McSheene J, Loges NT, Olbrich H, Haeffner K, Fliegauf M, Horvath J, Reinhardt R, Nielsen KG, Marthin JK, Baktai G, Anderson KV, Geisler R, Niswander L, Omran H, Burdine RD (2011) The coiled-coil domain containing protein CCDC40 is essential for motile cilia function and left-right axis formation. Nat Genet 43:79–84PubMedCrossRefGoogle Scholar
  66. 66.
    Wang K, Chen X, Guo CY, Liu FQ, Wang JR, Sun LF (2018) Cilia ultrastructural and gene variation of primary ciliary dyskinesia: report of three cases and literatures review. Zhonghua er ke za zhi Chinese J Pediat 56:134–137Google Scholar
  67. 67.
    Yin Z, Gonzales L, Kolla V, Rath N, Zhang Y, Lu MM, Kimura S, Ballard PL, Beers MF, Epstein JA, Morrisey EE (2006) Hop functions downstream of Nkx2.1 and GATA6 to mediate HDAC-dependent negative regulation of pulmonary gene expression. Am J Physiol Lung Cell Mol Physiol 291:L191–L199PubMedCrossRefGoogle Scholar
  68. 68.
    Ota, C., Ng-Blichfeldt, J.-P., Korfei, M., Alsafadi, H. N., Lehmann, M., Skronska-Wasek, W., M. De Santis, M., Guenther, A., Wagner, D. E., and Königshoff, M. (2018) Dynamic expression of HOPX in alveolar epithelial cells reflects injury and repair during the progression of pulmonary fibrosis, Sci Rep 8, 12983Google Scholar
  69. 69.
    Metsola J, Maksimow M, Ojaniemi M, Metsola H, Marttila-Ichihara F, Vuolteenaho R, Yegutkin GG, Salmi M, Hallman M, Jalkanen S (2014) Postnatal development and LPS responsiveness of pulmonary adenosine receptor expression and of adenosine-metabolizing enzymes in mice. Pediatr Res 76:515–521PubMedCrossRefGoogle Scholar
  70. 70.
    Gonzales JN, Gorshkov B, Varn MN, Zemskova MA, Zemskov EA, Sridhar S, Lucas R, Verin AD (2014) Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 306:L497–L507PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ren X, Ustiyan V, Pradhan A, Cai Y, Havrilak JA, Bolte CS, Shannon JM, Kalin TV, Kalinichenko VV (2014) FOXF1 transcription factor is required for formation of embryonic vasculature by regulating VEGF signaling in endothelial cells. Circ Res 115:709–720PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cai Y, Bolte C, Le T, Goda C, Xu Y, Kalin TV, Kalinichenko VV (2016) FOXF1 maintains endothelial barrier function and prevents edema after lung injury. Sci Signal 9:ra40PubMedCrossRefGoogle Scholar
  73. 73.
    Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, Downie JM, Roach JC, Cole AM, Lorenzo FR, Rogers AR, Brunkow ME, Cavalleri G, Hood L, Alpatty SM, Prchal JT, Jorde LB, Robbins PA, Simonson TS, Huff CD (2017) Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genet 13:e1006675PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Filmus J, Capurro M, Rast J (2008) Glypicans. Genome Biol 9:224PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Lin Q, Xiong LW, Pan XF, Gen JF, Bao GL, Sha HF, Feng JX, Ji CY, Chen M (2012) Expression of GPC3 protein and its significance in lung squamous cell carcinoma. Medical Oncol (Northwood, London, England) 29:663–669CrossRefGoogle Scholar
  76. 76.
    Jung JW, Ji AR, Lee J, Kim UJ, Lee ST (2002) Organization of the human PTK7 gene encoding a receptor protein tyrosine kinase-like molecule and alternative splicing of its mRNA. Biochim Biophys Acta 1579:153–163PubMedCrossRefGoogle Scholar
  77. 77.
    Kim JH, Kwon J, Lee HW, Kang MC, Yoon HJ, Lee ST, Park JH (2014) Protein tyrosine kinase 7 plays a tumor suppressor role by inhibiting ERK and AKT phosphorylation in lung cancer. Oncol Rep 31:2708–2712PubMedCrossRefGoogle Scholar
  78. 78.
    Wang Z, Hao Y, Lowe AW (2008) The adenocarcinoma-associated antigen, AGR2, promotes tumor growth, cell migration, and cellular transformation. Cancer Res 68:492–497PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Suvendu Giri
    • 1
  • Sumukh Thakar
    • 2
  • Syamantak Majumder
    • 2
  • Suvro Chatterjee
    • 1
    Email author
  1. 1.Vascular Biology Lab, AU-KBC Research Centre and Department of BiotechnologyAnna UniversityChennaiIndia
  2. 2.Department of Biological SciencesBirla Institute of Technology and Science (BITS)PilaniIndia

Personalised recommendations