Lung Cancer: Old Story, New Modalities!

  • Urmi Chatterji


Lung diseases, leading to lung cancer, are incommodious maladies often leading to dire patient prognosis and death all over the world. Lung cancer 5-year survival rate is only 15%. Death due to lung cancer alone is comparable to deaths due to breast, pancreas, colon, and oral cancers together. Lung cancer preferentially occurs in people who are 65 or older. A minority of patients diagnosed with the disease are younger than 45. Different treatment modalities have been implemented for treatment of lung disorders over the past three decades, and modernization of strategies has brought hope for the affected. Counteracting oxidative stress has been of major concern for treating lung cancer, though with limitations. Cancer stem cells, a subpopulation of cells within a tumor, are believed to confer resistance to standard chemotherapy and radiotherapy. Several studies have investigated the specific mechanisms of tumor recurrence driven by cancer stem cells; however, oxidative stress and cellular metabolism are often neglected attributes. Metabolism of cancer stem cells is still poorly understood and constitutes a promising area in cancer research. Distinct metabolic phenotypes in these cells depend on the type of cancer, the model system used, or the experimental design; however, controversies still need to be resolved. Specific alterations in metabolite levels and metabolic enzymes that regulate cancer stemness need to be verified, as does the long noncoding RNAs which modulate the expression of several factors which modulate oxidative stress. Identifying the role of metabolism in conferring resistance to therapy, mostly by the presence of cancer stem cells, is an opportunity for designing novel therapeutic targets, which will eliminate this resistant population, and additionally eradicating the whole tumor to a relapse-free condition and better patient prognosis.


Cancer stem cells Treatment modalities Oxidative stress Metabolic criteria Novel therapeutics 


  1. 1.
    Cooper G (2000) The development and causes of Cancer. In: The cell: a molecular approach, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  2. 2.
    Martin T, Ye L, Sanderas A, Lane J, Jiang W (2013) Cancer invasion and metastasis: molecular and cellular perspective. In: Madame curie bioscience database. Landes Bioscience, AustinGoogle Scholar
  3. 3.
    Hussain T, Nguyen QT (2014) Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 66:90–100PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Siegel RL, Miller K, Jemal A (2018) Cancer statistics. CA Cancer J Clin 68:7–30PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Surveillance, Epidemiology and End Results Program, National Cancer Institute. Archived from the original on 4 March 2016. Retrieved 5 March 2016Google Scholar
  6. 6.
    World Cancer Report (2014) World health organization (2014) Chapter 5.1. ISBN 92-832-0429-8Google Scholar
  7. 7.
    Vijayan VK, Paramesh H, Salvi SS, Dalal AK (2015) Enhancing indoor air quality –the air filter advantage. Lung India 32(5):473–479PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Upadhyay RP (2012) An overview of the burden of non-communicable diseases in India. Iran J Public Health 41:1–8PubMedPubMedCentralGoogle Scholar
  9. 9.
    Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H et al (2015) Global and regional estimates of COPD prevalence: systematic review and meta-analysis. J Glob Health 5:020415PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Kim V, Criner GJ (2013) Chronic bronchitis and chronic obstructive pulmonary disease. Am J Respir Crit Care Med 187:228–237PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Berg K, Wright JL (2016) The pathology of chronic obstructive pulmonary disease: progress in the 20th and 21st centuries. Arch Pathol Lab Med 140:1423–1428CrossRefGoogle Scholar
  12. 12.
    DeVries R, Kriebel D, Sama S (2016) Low level air pollution and exacerbation of existing copd: A case crossover analysis. Environ Health 15:98PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Hu G, Zhou Y, Tian J, Yao W, Li J, Li B, Ran P (2010) Risk of COPD from exposure to biomass smoke: A metaanalysis. Chest 138:20–31PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Santo Tomas LH (2011) Emphysema and chronic obstructive pulmonary disease in coal miners. Curr Opin Pulm Med 17:123–125PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Busch R, Hobbs BD, Zhou J, Castaldi PJ, McGeachie MJ, Hardin ME, Hawrylkiewicz I, Sliwinski P, Yim JJ, Kim WJ et al (2017) Genetic association and risk scores in a chronic obstructive pulmonary disease meta-analysis of 16,707 subjects. Am J Respir Cell Mol Biol 57:35–46PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Seifart C, Plagens A (2007) Genetics of chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2:541–550PubMedPubMedCentralGoogle Scholar
  17. 17.
    Russo R, Zillmer LR, Nascimento OA, Manzano B, Ivanaga IT, Fritscher L, Lundgren F, Miravitlles M, Gondim HD, Santos GJ et al (2016) Prevalence of alpha-1 antitrypsin deficiency and allele frequency in patients with COPD in Brazil. J Bras Pneumol 42:311–316PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Morissette MC, Parent J, Milot J (2009) Alveolar epithelial and endothelial cell apoptosis in emphysema: what we know and what we need to know. Int J Chron Obstruct Pulmon Dis 4:19–31PubMedPubMedCentralGoogle Scholar
  19. 19.
    Kosmider B, Messier EM, Chu HW, Mason RJ (2011) Human alveolar epithelial cell injury induced by cigarette smoke. PLoS One 6:e26059PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zhang L, Guo X, Xie W, Li Y, Ma M, Yuan T, Luo B (2015) Resveratrol exerts an anti-apoptotic effect on human bronchial epithelial cells undergoing cigarette smoke exposure. Mol Med Rep 11:1752–1758PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Demedts IK, Demoor T, Bracke KR, Joos GF, Brusselle GG (2006) Role of apoptosis in the pathogenesis of COPD and pulmonary emphysema. Respir Res 7:53PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Aoshiba K, Yokohori N, Nagai A (2003) Alveolar wall apoptosis causes lung destruction and emphysematous changes. Am J Respir Cell Mol Biol 28:555–562PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Tamimi A, Serdarevic D, Hanania NA (2012) The effects of cigarette smoke on airway inflammation in asthma and COPD: therapeutic implications. Respir Med 106:319–328PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    MacNee W (2005) Pathogenesis of chronic obstructive pulmonary disease. Proc Am Thorac Soc 2:258–266. discussion 290–251PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Keatings VM, Collins PD, Scott DM, Barnes PJ (1996) Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma. Am J Respir Crit Care Med 153:530–534PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Beckett EL, Stevens RL, Jarnicki AG, Kim RY, Hanish I, Hansbro NG, Deane A, Keely S, Horvat JC, Yang M et al (2013) A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis. J Allergy Clin Immunol 131:752–762PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Sharafkhaneh A, Hanania NA, Kim V (2008) Pathogenesis of emphysema: from the bench to the bedside. Proc Am Thorac Soc 5:475–477PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Boukhenouna S, Wilson MA, Bahmed K, Kosmider B (2018) Reactive oxygen species in chronic obstructive pulmonary disease. Oxidative Med Cell Longev 2018:5730395CrossRefGoogle Scholar
  29. 29.
    Elmasry SA-AM, Ghoneim A, Nasr M, AboZaid M (2015) Role of oxidant–antioxidant imbalance in the pathogenesis of chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc 64:813–820CrossRefGoogle Scholar
  30. 30.
    Thum MJ, Carter BD, Feskani CH, Friedman ND, Prentice R, Lopez AD, Hartage P, Gapstur SM (2013) 50-year trends in smoking-related mortality in the United States. N Engl J Med 368:351–364CrossRefGoogle Scholar
  31. 31.
    Jha P, Ramasundarahettige C, Landsman V, Rostron B, Thun M, Anderson RN, McAfee T, Peto R (2013) 21st-century hazards of smoking and benefits of cessation in the United States. N Engl J Med 368:341–350PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Raaschou-Nielsen O, Andersen ZJ, Beelen R, Samoli E, Stafoggia M, Wenmayr G, Hoffmann B, Fischer P, Nieuwenhuijsen MJ, Brunekreef B et al (2013) Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European study of cohorts for air pollution effects [ESCAPE]. Lancet Oncol 14:813–822PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Guo Y, Zeng H, Li S, Barnett AG, Zhang S, Zou X, Huxley RR, Chen W (2015) Lung cancer incidence and ambient air pollution in China: a spatial age-period cohort study 1990–2009. Lancet 2015:386Google Scholar
  34. 34.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW (2013) Cancer genome landscapes. Science 339(6127):1546–1558PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Gerlinger M, McGranahan N, Dewhurst SM, Burrell RA, Tomlinson I, Swanton C (2014) Cancer: evolution within a lifetime. Annu Rev Genet 48:215–236PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Carvalho S, Leijenaar RT, Velazquez ER, Oberije C, Parmar C, van Elmpt W et al (2013) Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncol 52(7):1398–1404PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164(4):681–694PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450(7171):893–898PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J et al (2014) Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346(6206):256–259PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL et al (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150(6):1121–1134PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Jamal-Hanjani M, Hackshaw A, Ngai Y, Shaw J, Dive C, Quezada S et al (2014) Tracking genomic cancer evolution for precision medicine: the lung TRACERx study. PLoS Biol 12(7):e1001906PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Imielinski M, Berger AH, Hammerman PS, Hernandez B, Pugh TJ, Hodis E et al (2012) Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150(6):1107–1120PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Cancer Genome Atlas Research Network (2012) Comprehensive genomic characterization of squamous cell lung cancers. Nature 489(7417):519–525CrossRefGoogle Scholar
  45. 45.
    Iglesias VS, Giuranno L, Dubois LJ, Jan Theys J, Vooijs M (2018) Drug resistance in non-small cell lung cancer: a potential for NOTCH targeting? Front Oncol 8:267CrossRefGoogle Scholar
  46. 46.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Prasetyanti PR, Medema JP (2017) Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 16(1):41PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang P, Wan WW, Xiong SL, Feng H, Wu N (2017) Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer. Cell Death Dis 3:16105CrossRefGoogle Scholar
  49. 49.
    Carney DN, Gazdar AF, Bunn PA Jr, Guccion JG (1982) Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells 1(3):149–164PubMedPubMedCentralGoogle Scholar
  50. 50.
    Ho MM, Ng AV, Lam S, Hung JY (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67(10):4827–4833PubMedCrossRefGoogle Scholar
  51. 51.
    Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15(3):504–514PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Kaiser J (2015) The cancer stem cell gamble. Science 347(6219):226–229PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Takebe N, Harris PJ, Warren RQ, Ivy SP (2010) Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 8(2):97–106PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Zaman GJ, Versantvoort CH, Smit JJ, Eijdems EW, de Haas M, Smith AJ et al (1993) Analysis of the expression of MRP, the gene for a new putative transmembrane drug transporter, in human multidrug resistant lung cancer cell lines. Cancer Res 53(8):1747–1750PubMedPubMedCentralGoogle Scholar
  55. 55.
    Huang J, Chen Y, Li J, Zhang K, Chen J, Chen D et al (2016) Notch-1 confers chemoresistance in lung adenocarcinoma to taxanes through AP-1/microRNA-451 mediated regulation of MDR-1. Mol Ther Nucleic Acids 5:e375PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Chen D, Huang J, Zhang K, Pan B, Chen J, De W et al (2014) MicroRNA-451 induces epithelial-mesenchymal transition in docetaxel-resistant lung adenocarcinoma cells by targeting proto-oncogene c-Myc. Eur J Cancer 50(17):3050–3067PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Morgan KM, Fischer BS, Lee FY, Shah JJ, Bertino JR, Rosenfeld J et al (2017) Gamma secretase inhibition by BMS-906024 enhances efficacy of paclitaxel in lung adenocarcinoma. Mol Cancer Ther 16(12):2759–2769PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Aldonza MBD, Hong J-Y, Lee SK (2017) Paclitaxel-resistant cancer cell-derived secretomes elicit ABCB1-associated docetaxel cross-resistance and escape from apoptosis through FOXO3a-driven glycolytic regulation. Exp Mol Med 49:e286PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Landor SK, Mutvei AP, Mamaeva V, Jin S, Busk M, Borra R et al (2011) Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms. Proc Natl Acad Sci U S A 108(46):18814–18819PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Briscoe J, Thérond PP (2013) The mechanisms of hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 14:416–429PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    McMahon AP, Ingham PW, Tabin CJ (2003) Developmental roles and clinical significance of hedgehog signaling. Curr Top Dev Biol 53:1–114PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Pepicelli CV, Lewis PM, McMahon AP (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Goodrich LV, Milenković L, Higgins KM, Scott MP (1997) Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 277:1109–1113PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci U S A 103:13180–13185PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Fitch PM, Howie SEM, Wallace WAH (2011) Oxidative damage and TGF-β differentially induce lung epithelial cell sonic hedgehog and tenascin-C expression: implications for the regulation of lung remodelling in idiopathic interstitial lung disease: SHH and tenascin-C in type-II alveolar cells. Int J Exp Pathol 92:8–17PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bolaños AL, Milla CM, Lira JC, Ramírez R, Checa M, Barrera L, García-Alvarez J, Carbajal V, Becerril C, Gaxiola M et al (2012) Role of Sonic Hedgehog in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L978–L990PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422:313–317PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Park K-S, Martelotto LG, Peifer M, Sos ML, Karnezis AN, Mahjoub MR, Bernard K, Conklin JF, Szczepny A, Yuan J et al (2011) A crucial requirement for Hedgehog signaling in small cell lung cancer. Nat Med 17:1504–1508PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Szczepny A, Rogers S, Jayasekara WSN, Park K, McCloy RA, Cochrane CR, Ganju V, Cooper WA, Sage J, Peacock CD et al (2017) The role of canonical and non-canonical Hedgehog signaling in tumor progression in a mouse model of small cell lung cancer. Oncogene 36:5544PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Yue D, Li H, Che J, Zhang Y, Tseng H-HK, Jin JQ, Luh TM, Giroux-Leprieur E, Mo M, Zheng Q et al (2014) Hedgehog/Gli promotes epithelial-mesenchymal transition in lung squamous cell carcinomas. J Exp Clin Cancer Res 33:34PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Oren O, Smith BD (2017) Eliminating cancer stem cells by targeting embryonic signaling pathways. Stem Cell Rev 13:17–23CrossRefGoogle Scholar
  72. 72.
    Figeac F, Dagouassat M, Mahrouf-Yorgov M, Le Gouvello S, Trébeau C, Sayed A, Stern JB, Validire P, Dubois-Rande JL, Boczkowski J et al (2015) Lung fibroblasts share mesenchymal stem cell features which are altered in chronic obstructive pulmonary disease via the overactivation of the hedgehog signaling pathway. PLoS One 10:e0121579PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lemjabbar-Alaoui H, Dasari V, Sidhu SS, Mengistab A, Finkbeiner W, Gallup M, Basbaum C (2006) Wnt and Hedgehog are critical mediators of cigarette smoke-induced lung cancer. PLoS One 1:e93PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Al-Wadei MH, Banerjee J, Al-Wadei HAN, Schuller HM (2016) Nicotine induces self-renewal of pancreatic cancer stem cells via neurotransmitter-driven activation of sonic hedgehog signalling. Eur J Cancer 52:188–196PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Giroux Leprieur E, Tolani B, Li H, Leguay F, Hoang NT, Acevedo LA, Jin JQ, Tseng HH, Yue D, Kim IJ et al (2017) Membrane-bound full-length Sonic Hedgehog identifies cancer stem cells in human non-small cell lung cancer. Oncotarget 8:103744–103757PubMedPubMedCentralGoogle Scholar
  76. 76.
    Dhingra VK, Mahajan A, Basu S (2015) Emerging clinical applications of PET based molecular imaging in oncology: the promising future potential for evolving personalized cancer care. Indian J Radiol Imaging 25:332–341PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Griffeth LK (2005) Use of PET/CT scanning in cancer patients: technical and practical considerations. Proc (Bayl Univ Med Cent) 18:321–330CrossRefGoogle Scholar
  78. 78.
    Chen W, Dong J, Haiech J, Kilhoffer M-C, Zeniou M (2016) Cancer stem cell quiescence and plasticity as major challenges in cancer therapy. Stem Cells Int 2016:1740936PubMedPubMedCentralGoogle Scholar
  79. 79.
    Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Vegt E, De Jong M, Wetzels JF, Masereeuw R, Melis M, Oyen WJ, Gotthardt M, Boerman OC (2010) Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med 51:1049–1058PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Thundimadathil J (2012) Cancer treatment using peptides: current therapies and future prospects. J Amino Acids 2012:967347PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Shoeib M, Saeed S, Alireza MA, Soroush S (2009) Peptidomimetics and their applications in antifungal drug design. Anti-Infect Agents Med Chem 8:327–344CrossRefGoogle Scholar
  83. 83.
    Gibbons JA, Hancock AA, Vitt CR, Knepper S, Buckner SA, Brune ME, Milicic I, Kerwin J, Richter LS, Taylor EW (1996) Pharmacologic characterization of CHIR 2279, an N-substituted glycine peptoid with high-affinity binding for alpha 1-adrenoceptors. J Pharmacol Exp Ther 277:885–899PubMedPubMedCentralGoogle Scholar
  84. 84.
    Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W (2011) RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102:991–998PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Lakhin AV, Tarantul VZ, Gening LV (2013) Aptamers: problems, solutions and prospects. Acta Nat 5:34–43CrossRefGoogle Scholar
  86. 86.
    Hays EM, Duan W, Shigdar S (2017) Aptamers and glioblastoma: their potential use for imaging and therapeutic applications. Int J Mol Sci 18:2576PubMedCentralCrossRefGoogle Scholar
  87. 87.
    Wang AZ, Farokhzad OC (2014) Current progress of aptamer-based molecular imaging. J Nucl Med 55:353–356PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Lee JW, Kim HJ, Heo K (2015) Therapeutic aptamers: developmental potential as anticancer drugs. BMB Rep 48:234–237PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Xiang D, Zheng C, Zhou SF, Qiao S, Tran PH, Pu C, Li Y, Kong L, Kouzani AZ, Lin J et al (2015) Superior performance of aptamer in tumor penetration over antibody: implication of aptamer-based theranostics in solid tumors. Theranostics 5:1083–1097PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Hellmann MD, Rizvi NA, Goldman JW, Gettinger SN, Borghaei H, Brahmer JR et al (2017) Nivolumab plus ipilimumab as first-line treatment for advanced non-small-cell lung cancer (CheckMate 012): results of an open-label, phase 1, multicohort study. Lancet Oncol 18(1):31–41CrossRefGoogle Scholar
  91. 91.
    Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS et al (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171(4):934–949.e15PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Alley EW, Lopez J, Santoro A et al (2017) Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol 18:623–630PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Somasundaram A, Burns TF (2017) The next generation of immunotherapy: keeping lung cancer in check. J Hematol Oncol 10:87PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cortez MA, Bueso-Ramos C, Ferdin J, Lopez-Berestein G, Sood AK, Calin GA (2011) MicroRNAs in body fluids – the mix of hormones and biomarkers. Nat Rev Clin Oncol 8(8):467–477PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Qi P, Du X (2013) The long non-coding RNAs, a new cancer diagnostic and therapeutic gold mine. Mod Pathol 26(2):155–165PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Weber DG, Johnen G, Casjens S et al (2013) Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes 6(1):518PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Zhang R, Xia Y, Wang Z et al (2017) Serum long non-coding RNA MALAT-1 protected by exosomes is up-regulated and promotes cell proliferation and migration in non-small cell lung cancer. Biochem Biophys Res Commun 490(2):406–414PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Tantai J, Hu D, Yang Y, Geng J (2015) Combined identification of long non-coding RNA XIST and HIF1A-AS1 in serum as an effective screening for non-small cell lung cancer. Int J Clin Exp Pathol 8(7):7887PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hu X, Bao J, Wang Z et al (2016) The plasma lncRNA acting as fingerprint in non-small-cell lung cancer. Tumour Biol 37(3):3497–3504PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Xie Y, Zhang Y, Du L et al (2018) Circulating long noncoding RNA act as potential novel biomarkers for diagnosis and prognosis of non-small cell lung cancer. Mol Oncol 12(5):648–658PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Zhao W, Luo J, Jiao S (2014) Comprehensive characterization of cancer subtype associated long non-coding RNAs and their clinical implications. Sci Rep 4(10):6591PubMedPubMedCentralGoogle Scholar
  102. 102.
    White NM, Cabanski CR, Silva-Fisher JM, Dang HX, Govindan R, Maher CA (2014) Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol 15(8):429PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sang H, Liu H, Xiong P, Zhu M (2015) Long non-coding RNA functions in lung cancer. Tumour Biol 36(6):4027–4037PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Ricciuti B, Mencaroni C, Paglialunga L et al (2016) Long noncoding RNAs: new insights into non-small cell lung cancer biology, diagnosis and therapy. Med Oncol 33(2):18PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Yao Y, Li J, Wang L (2014) Large intervening non-coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers. Int J Mol Sci 15(10):18985–18999PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Liu Z, Sun M, Lu K et al (2013) The long noncoding RNA HOTAIR contributes to cisplatin resistance of human lung adenocarcinoma cells via downregualtion of p21(WAF1/CIP1) expression. PLoS One 8(10):e77293PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Li CH, Chen Y (2013) Targeting long non-coding RNAs in cancers: progress and prospects. Int J Biochem Cell Biol 45(8):1895–1910PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Whitehead KA, Langer R, Anderson DG (2009) Knocking down barriers: advances in siRNA delivery. Nat Rev Drug Discov 8(2):129–138PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci U S A 102(16):5679–5684PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Tripathi V, Shen Z, Chakraborty A et al (2013) Long non-coding RNA MALAT1 controls cell cycle progression by regulating the expression of oncogenic transcription factor B-MYB. PLoS Genet 9(3):e1003368PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Gutschner T, Hämmerle M, Eissmann M et al (2013) The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res 73(3):1180–1189PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Mizrahi A, Czerniak A, Levy T et al (2009) Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med 7(1):69PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Fatemi RP, Velmeshev D, Faghihi MA (2014) De-repressing lncRNA-targeted genes to upregulate gene expression: focus on small molecule therapeutics. Mol Ther Nucleic Acids 3(11):e196PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  116. 116.
    Warburg O (1956a) On respiratory impairment in cancer cells. Science 124:269–270PubMedPubMedCentralGoogle Scholar
  117. 117.
    Warburg O (1956b) On the origin of cancer cells. Science 123:309–314PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH (1997) Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 272:17269–17275PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, Zhuang H, Cinalli RM, Alavi A, Rudin CM et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899PubMedCrossRefGoogle Scholar
  121. 121.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S et al (2010) Activation of a metabolic gene regulatory network downstream of mTORcomplex 1. Mol Cell 39:171–183PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV (2000) Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 275:21797–21800PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Nikiforov MA, Chandriani S, O’connell B, Petrenko O, Kotenko I, Beavis A, Sedivy JM, Cole MD (2002) A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism. Mol Cell Biol 22:5793–5800PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Kim J-W, Gao P, Liu Y-C, Semenza GL, Dang CV (2007) Hypoxia inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol 27:7381–7393PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Morrish F, Noonan J, Perez-Olsen C, Gafken PR, Fitzgibbon M, Kelleher J, Vangilst M, Hockenbery D (2010) Myc-dependent mitochondrial generation of acetyl-CoA contributes to fatty acid biosynthesis and histone acetylation during cell cycle entry. J Biol Chem 285:36267–36274PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bensaad K, Tsuruta A, Selak MA, Vidal MNC, Nakano K, Bartrons R, Gottlieb E, Vousden KH (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126:107–120PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653PubMedCrossRefGoogle Scholar
  129. 129.
    Semenza GL, Roth PH, Fang HM, Wang GL (1994) Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 269:23757–23763PubMedPubMedCentralGoogle Scholar
  130. 130.
    Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC (2006) HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3:187–197PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Folmes CDL, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C, Terzic A (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Panopoulos AD, Yanes O, Ruiz S, Kida YS, Diep D, Tautenhahn R, Herrerı́as A, Batchelder EM, Plongthongkum N, Lutz M et al (2012) The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res 22:168–177PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Sancho P, Barneda D, Heeschen C (2016) Hallmarks of cancer stem cell metabolism. Br J Cancer 114:1305–1312PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Ciavardelli D, Rossi C, Barcaroli D, Volpe S, Consalvo A, Zucchelli M, De Cola A, Scavo E, Carollo R, D’agostino D et al (2014) Breast cancer stem cells rely on fermentative glycolysis and are sensitive to 2-deoxyglucose treatment. Cell Death Dis 5:e1336PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Chen J, Li Y, Yu T-S, Mckay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Kreso A, O’brien CA, van Galen P, Gan OI, Notta F, Brown AMK, Ng K, Ma J, Wienholds E, Dunant C et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339:543–548PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Kurtova AV, Xiao J, Mo Q, Pazhanisamy S, Krasnow R, Lerner SP, Chen F, Roh TT, Lay E, Ho PL et al (2015) Blocking PGE2-induced tumour repopulation abrogates bladder cancer chemoresistance. Nature 517:209–213PubMedCrossRefGoogle Scholar
  138. 138.
    Liau BB, Sievers C, Donohue LK, Gillespie SM, Flavahan WA, Miller TE, Venteicher AS, Hebert CH, Carey CD, Rodig SJ et al (2017) Adaptive chromatin remodeling drives glioblastoma stem cell plasticity and drug tolerance. Cell Stem Cell 20:233–246.e237PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Urmi Chatterji
    • 1
  1. 1.Cancer Research Lab, Department of ZoologyUniversity of CalcuttaKolkataIndia

Personalised recommendations