Advertisement

Neuroimaging Advance in Depressive Disorder

  • Daihui PengEmail author
  • Zhijian YaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1180)

Abstract

Neuroimaging shed light on the understanding of psychopathological mechanisms underlying major depressive disorder, despite its inconsistent findings. Noninvasive neuroimaging studies have indicated that various behavioral deficits in major depressive disorder are implicated with structural and functional abnormalities in specific brain regions. Moreover, disrupted brain morphological and functional properties may map out the underlying pathways from genetic and environmental factors to the prognosis of depression. Molecular neuroimaging studies have also provided novel method to probe transmitters and metabolites in brain regions rather than simply measuring brain morphological changes. Recent advanced neuroimaging approaches (e.g., pattern recognition) provides great opportunity to probe neuroimaging biomarkers that may contributes to improving diagnostic accuracy and predicting treatment outcomes. In this chapter, we conclude neuroimaging studies in the research field of depression from psychopathological, molecular, genetic/environmental, diagnostic, and therapeutic perspectives.

Keywords

Neuroimaging Major depressive disorder Genetic Molecular Treatment Classification 

References

  1. Alexander AL et al (2007) Diffusion tensor imaging of the brain 4(3):316–329Google Scholar
  2. Alexopoulos GS et al (2012) Functional connectivity in the cognitive control network and the default mode network in late-life depression. 139(1):56Google Scholar
  3. Almeida JR et al (2013) Pattern recognition analysis of anterior cingulate cortex blood flow to classify depression polarity. Br J Psychiatry 203(3):310–311PubMedPubMedCentralCrossRefGoogle Scholar
  4. Amen DG et al (2017) Classification of depression, cognitive disorders, and co-morbid depression and cognitive disorders with perfusion SPECT neuroimaging 57(1):253–266Google Scholar
  5. Ando T, Dunn AJ (1999) Mouse tumor necrosis factor-alpha increases brain tryptophan concentrations and norepinephrine metabolism while activating the HPA axis in mice. NeuroImmunoModulation 6(5):319PubMedCrossRefGoogle Scholar
  6. Andrei M et al (2013) Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter-network connectivity in major depressive disorder 7(2):930Google Scholar
  7. Arnone D (2019) Functional MRI findings, pharmacological treatment in major depression and clinical response. Prog Neuropsychopharmacol Biol Psychiatry 91:28–37PubMedCrossRefGoogle Scholar
  8. Ball TM, Stein MB, Paulus MP (2014) Toward the application of functional neuroimaging to individualized treatment for anxiety and depression. Depress Anxiety 31(11):920–933PubMedCrossRefGoogle Scholar
  9. Beijers L et al (2019) Data-driven biological subtypes of depression: systematic review of biological approaches to depression subtyping. Mol Psychiatry 24:888–900PubMedCrossRefGoogle Scholar
  10. Bick J et al (2019) Early parenting intervention and adverse family environments affect neural function in middle childhood. Biol Psychiatry 85(4):326–335PubMedCrossRefGoogle Scholar
  11. Breitenstein B, Scheuer S, Holsboer F (2014) Are there meaningful biomarkers of treatment response for depression? Drug Discov Today 19(5):539–561PubMedCrossRefGoogle Scholar
  12. Bunge SA, Kahn IJEoN (2009) Cognition: an overview of neuroimaging techniques 1063–1067CrossRefGoogle Scholar
  13. Carballedo A et al (2013) Brain-derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. Am J Med Genet B Neuropsychiatr Genet 162B(2):183–190PubMedCrossRefGoogle Scholar
  14. Cardoner N et al (2013) Val66Met BDNF genotypes in melancholic depression: effects on brain structure and treatment outcome. Depress Anxiety 30(3):225–233PubMedPubMedCentralCrossRefGoogle Scholar
  15. Catenadell’Osso M et al (2013) Inflammation, serotonin and major depression. Curr Drug Targets 14(5):571–577CrossRefGoogle Scholar
  16. Chen J et al (2012) Genotypic association of the DAOA gene with resting-state brain activity in major depression. Mol Neurobiol 46(2):361–373PubMedCrossRefGoogle Scholar
  17. Chen Y et al (2015) Aberrant connectivity within the default mode network in first-episode, treatment-naïve major depressive disorder 183:49–56Google Scholar
  18. Chen G et al (2017) Intrinsic disruption of white matter microarchitecture in first-episode, drug-naive major depressive disorder: a voxel-based meta-analysis of diffusion tensor imaging. Prog Neuropsychopharmacol Biol Psychiatry 76:179–187PubMedCrossRefGoogle Scholar
  19. Chi KF, Korgaonkar M, Grieve SM (2015) Imaging predictors of remission to anti-depressant medications in major depressive disorder. J Affect Disord 186:134–144PubMedCrossRefGoogle Scholar
  20. Christmas DM, Potokar J, Davies SJ (2011) A biological pathway linking inflammation and depression: activation of indoleamine 2, 3-dioxygenase. Neuropsychiatric Dis Treat 7:431Google Scholar
  21. Costafreda SG et al (2009a) Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 20(7):637–641PubMedCrossRefGoogle Scholar
  22. Costafreda SG et al (2009b) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4(7):e6353PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dantzer R, Capuron L (2017) Inflammation-associated depression: evidence, mechanisms and implications. Springer International PublishingGoogle Scholar
  24. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46PubMedPubMedCentralCrossRefGoogle Scholar
  25. Delany FM et al (2016) Depression, immune function, and early adrenarche in children. Psychoneuroendocrinology 63:228–234PubMedCrossRefGoogle Scholar
  26. Deng F et al (2017) Abnormal segments of right uncinate fasciculus and left anterior thalamic radiation in major and bipolar depression. Prog Neuro-Psychopharmacol & Biol Psychiatry 81Google Scholar
  27. Dichter GS, Gibbs D, Smoski MJ (2015) A systematic review of relations between resting-state functional-MRI and treatment response in major depressive disorder. J Affect Disord 172:8–17PubMedCrossRefGoogle Scholar
  28. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood 87(6):2095–2147PubMedCrossRefGoogle Scholar
  29. Domschke K et al (2016) Magnetoencephalographic correlates of emotional processing in major depression before and after pharmacological treatment. Int J Neuropsychopharmacol 19(2)PubMedPubMedCentralCrossRefGoogle Scholar
  30. Drysdale AT et al (2017) Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat Med 23(1):28–38PubMedCrossRefGoogle Scholar
  31. Dunlop BW et al (2017) Functional connectivity of the subcallosal cingulate cortex and differential outcomes to treatment with cognitive-behavioral therapy or antidepressant medication for major depressive disorder. Am J Psychiatry 174(6):533–545PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dusi N et al (2015) Brain structural effects of antidepressant treatment in major depression. Curr Neuropharmacol 13(4):458–465PubMedPubMedCentralCrossRefGoogle Scholar
  33. Eisenberger NI et al (2009) An fMRI study of cytokine-induced depressed mood and social pain: the role of sex differences. Neuroimage 47(3):881–890PubMedPubMedCentralCrossRefGoogle Scholar
  34. Eisenberger NI et al (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiat 68(8):748–754PubMedCrossRefGoogle Scholar
  35. El-Hage W et al (2013) Mechanisms of antidepressant resistance. Front Pharmacol 4:146PubMedGoogle Scholar
  36. Eschweiler GW et al (2000) Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. Psychiatry Research: Neuroimaging 99(3):161–172PubMedCrossRefGoogle Scholar
  37. Felger JC et al (2016) Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry 21(10):1358–1365PubMedCrossRefGoogle Scholar
  38. Feder S et al (2017) Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects. J Affect Disord 222:79–87PubMedCrossRefGoogle Scholar
  39. Flint J, Kendler KS (2014) The genetics of major depression. Neuron 81(3):484–503PubMedPubMedCentralCrossRefGoogle Scholar
  40. Frodl T, Amico F (2014) Is there an association between peripheral immune markers and structural/functional neuroimaging findings? Prog Neuropsychopharmacol Biol Psychiatry 48(2):295–303PubMedCrossRefGoogle Scholar
  41. Frodl T et al (2004) Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 65(4):492–499PubMedCrossRefGoogle Scholar
  42. Frodl TS et al (2008) Depression-related variation in brain morphology over 3 years: effects of stress? Arch Gen Psychiatry 65(10):1156–1165PubMedCrossRefGoogle Scholar
  43. Frodl T et al (2010) Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 35(6):1383–1390PubMedPubMedCentralCrossRefGoogle Scholar
  44. Frodl T et al (2012) Reduced expression of glucocorticoid-inducible genes GILZ and SGK-1: high IL-6 levels are associated with reduced hippocampal volumes in major depressive disorder. Translational Psychiatry 2(3):e88PubMedPubMedCentralCrossRefGoogle Scholar
  45. Fu CH et al (2008) Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiat 64(6):505–512PubMedCrossRefGoogle Scholar
  46. Fujino J et al (2015) Anterior cingulate volume predicts response to cognitive behavioral therapy in major depressive disorder. J Affect Disord 174:397–399PubMedCrossRefGoogle Scholar
  47. Fung G et al (2015) Distinguishing bipolar and major depressive disorders by brain structural morphometry: a pilot study. Bmc Psychiatry 15(1):298PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gao S, Calhoun VD, Sui J (2018) Machine learning in major depression: from classification to treatment outcome prediction. CNS Neurosci Ther 24(11):1037–1052PubMedPubMedCentralCrossRefGoogle Scholar
  49. Glover GH (2011) Overview of functional magnetic resonance imaging. Neurosurg Clin N Am 22(2):133–9, viiPubMedPubMedCentralCrossRefGoogle Scholar
  50. Goldapple K et al (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61(1):34–41PubMedCrossRefGoogle Scholar
  51. Gong Q, He Y (2015) Depression, neuroimaging and connectomics: a selective overview. Biol Psychiatry 77(3):223–235CrossRefGoogle Scholar
  52. Gong L et al (2018) Disrupted reward and cognitive control networks contribute to anhedonia in depression. J Psychiatr Res 103:61–68PubMedCrossRefGoogle Scholar
  53. Guo H et al (2014) Synergistic effect of 5-HT2A receptor gene and MAOA gene on the negative emotion of patients with depression. Clin Physiol Funct Imaging 34(4):277–281PubMedCrossRefGoogle Scholar
  54. Han KM et al (2014) Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. J Affect Disord 155:42–48CrossRefGoogle Scholar
  55. Han KM et al (2017) Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Hum Brain Mapp 38(3):1299–1310PubMedCrossRefGoogle Scholar
  56. Hannestad J et al (2012) Endotoxin-induced systemic inflammation activates microglia: [11C]PBR28 positron emission tomography in nonhuman primates. Neuroimage 63(1):232–239PubMedPubMedCentralCrossRefGoogle Scholar
  57. Haroon E et al (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Molecular Psychiatry 21(10):1351–1357PubMedPubMedCentralCrossRefGoogle Scholar
  58. Harrison NA et al (2011) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiat 66(5):407–414CrossRefGoogle Scholar
  59. Hayley S et al (2005) The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 135(3):659–678PubMedCrossRefGoogle Scholar
  60. Hestad KA et al (2017) The relationships among tryptophan, kynurenine, indoleamine 2,3-dioxygenase, depression, and neuropsychological performance. Front Psychol 8(1561)Google Scholar
  61. Himmerich H et al (2006) Successful antidepressant therapy restores the disturbed interplay between TNF-α system and HPA axis. Biol Psychiat 60(8):882PubMedCrossRefGoogle Scholar
  62. Hirakawa N et al (2017) Right hemisphere pitch-mismatch negativity reduction in patients with major depression: An MEG study. J Affect Disord 215:225PubMedCrossRefGoogle Scholar
  63. Hosang GM et al (2014a) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis 12(1):1–11Google Scholar
  64. Hosang GM et al (2014b) Interaction between stress and the BDNF Val66Met polymorphism in depression: a systematic review and meta-analysis. BMC Med 12:7Google Scholar
  65. Hsieh MH et al (2002) Hippocampal volume and antidepressant response in geriatric depression. Int J Geriatr Psychiatry 17(6):519–525PubMedCrossRefGoogle Scholar
  66. Hsu DT et al (2012) Variation in the corticotropin-releasing hormone receptor 1 (CRHR1) gene influences fMRI signal responses during emotional stimulus processing. J Neurosci 32(9):3253–3260PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huang TL, Lin CC (2015) Advances in biomarkers of major depressive disorder. Adv Clin Chem 68:177PubMedCrossRefGoogle Scholar
  68. Jaworska N et al (2016) The influence of 5-HTTLPR and Val66Met polymorphisms on cortical thickness and volume in limbic and paralimbic regions in depression: a preliminary study. BMC Psychiatry 16:61PubMedPubMedCentralCrossRefGoogle Scholar
  69. Jefferson AL et al (2007) Inflammatory biomarkers are associated with total brain volume. The Framingham Heart Study 68(13):1032–1038Google Scholar
  70. Jehn CF et al (2010) Association of IL-6, hypothalamus-pituitary-adrenal axis function, and depression in patients with cancer. Integrative Cancer Therapies 9(3):270–275PubMedCrossRefGoogle Scholar
  71. Jiang J et al (2017) Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci 42(3):150–163PubMedCrossRefGoogle Scholar
  72. Jie NF et al (2015) Discriminating bipolar disorder from major depression based on SVM-FoBa: efficient feature selection with multimodal brain imaging data. IEEE Trans Auton Ment Dev 7(4):320–331PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kambeitz J et al (2017) Detecting neuroimaging biomarkers for depression: a meta-analysis of multivariate pattern recognition studies. Biol Psychiatry 82(5):330–338PubMedCrossRefGoogle Scholar
  74. Kaneko N et al (2006) Suppression of cell proliferation by interferon-alpha through interleukin-1 production in adult rat dentate gyrus. Neuropsychopharmacology 31(12):2619–2626PubMedCrossRefGoogle Scholar
  75. Kelly PA et al (2013) Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: neural markers of vulnerability? Biol Psychiatry 74(11):845–852PubMedCrossRefGoogle Scholar
  76. Kennedy SH et al (2007) Differences in brain glucose metabolism between responders to CBT and venlafaxine in a 16-week randomized controlled trial. Am J Psychiatry 164(5):778–788PubMedCrossRefGoogle Scholar
  77. Konarski JZ et al (2009) Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J Psychiatry Neurosci 34(3):175–180PubMedPubMedCentralGoogle Scholar
  78. Korgaonkar MS et al (2014) Abnormal structural networks characterize major depressive disorder: a connectome analysis. Biol Psychiat 76(7):567–574PubMedCrossRefGoogle Scholar
  79. Kullmann JS et al (2013) Neural response to emotional stimuli during experimental human endotoxemia. Hum Brain Mapp 34(9):2217–2227PubMedCrossRefGoogle Scholar
  80. Lee BT et al (2009) Impact of the tryptophan hydroxylase 1 gene A218C polymorphism on amygdala activity in response to affective facial stimuli in patients with major depressive disorder. Genes Brain Behav 8(5):512–518PubMedCrossRefGoogle Scholar
  81. Lener MS, Iosifescu DV (2015) In pursuit of neuroimaging biomarkers to guide treatment selection in major depressive disorder: a review of the literature. Ann N Y Acad Sci 1344:50–65PubMedCrossRefGoogle Scholar
  82. Lener MS et al (2017) Glutamate and gamma-aminobutyric acid systems in the pathophysiology of major depression and antidepressant response to ketamine. Biol Psychiatry 81(10):886–897PubMedCrossRefGoogle Scholar
  83. Leuchter AF et al (2010) Biomarkers to predict antidepressant response. Curr Psychiatry Rep 12(6):553–562PubMedPubMedCentralCrossRefGoogle Scholar
  84. Li M et al (2013a) SLC6A15 rs1545843 and depression: implications from brain imaging data. Am J Psychiatry 170(7):805PubMedCrossRefGoogle Scholar
  85. Li B et al (2013b) A treatment-resistant default mode subnetwork in major depression. Biol Psychiat 74(1):48–54PubMedCrossRefGoogle Scholar
  86. Librenza-Garcia D et al (2017) The impact of machine learning techniques in the study of bipolar disorder: a systematic review. Neurosci Biobehav Rev 80:538–554PubMedCrossRefGoogle Scholar
  87. Linden DE (2012) The challenges and promise of neuroimaging in psychiatry. Neuron 73(1):8–22PubMedCrossRefGoogle Scholar
  88. Liu CH et al (2015a) Alteration of spontaneous neuronal activity within the salience network in partially remitted depression. Brain Res 1599:93–102PubMedCrossRefGoogle Scholar
  89. Liu CH et al (2015b) Alteration of spontaneous neuronal activity within the salience network in partially remitted depression. 1599:93Google Scholar
  90. Liu Y, Zhao J, Guo W (2018) Emotional Roles of Mono-Aminergic Neurotransmitters in Major Depressive Disorder and Anxiety Disorders. Front Psychol 9:2201PubMedPubMedCentralCrossRefGoogle Scholar
  91. Lois G, Wessa M (2016) Differential association of default mode network connectivity and rumination in healthy individuals and remitted MDD patients. Soc Cogn Affect Neurosci 11(11):1792–1801PubMedPubMedCentralCrossRefGoogle Scholar
  92. Lu Q et al (2013) Predicting depression based on dynamic regional connectivity: a windowed Granger causality analysis of MEG recordings. Brain Res 1535:52–60PubMedCrossRefGoogle Scholar
  93. Luborzewski A et al (2007) Metabolic alterations in the dorsolateral prefrontal cortex after treatment with high-frequency repetitive transcranial magnetic stimulation in patients with unipolar major depression. J Psychiatr Res 41(7):606–615PubMedCrossRefGoogle Scholar
  94. Macqueen G, Frodl T (2011) The hippocampus in major depression: evidence for the convergence of the bench and bedside in psychiatric research|[quest]. Molecular Psychiatry 16(3):252PubMedCrossRefGoogle Scholar
  95. MacQueen GM et al (2008) Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biol Psychiatry 64(10):880–883PubMedPubMedCentralCrossRefGoogle Scholar
  96. Maglanoc LA et al (2019) Data-driven clustering reveals a link between symptoms and functional brain connectivity in depression. Biol Psychiatry Cogn Neurosci Neuroimaging 4(1):16–26Google Scholar
  97. Marchand WR (2010) Cortico-basal ganglia circuitry: a review of key research and implications for functional connectivity studies of mood and anxiety disorders. Brain Struct Funct 215(2):73–96PubMedCrossRefGoogle Scholar
  98. Marsland AL et al (2008) Interleukin-6 covaries inversely with hippocampal grey matter volume in middle-aged adults. Biol Psychiat 64(6):484PubMedCrossRefGoogle Scholar
  99. Masdeu JC (2011) Neuroimaging in psychiatric disorders. Neurotherapeutics 8(1):93–102PubMedPubMedCentralCrossRefGoogle Scholar
  100. Mastorakos G, Chrousos GP, Weber JS (1993) Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J Clin Endocrinol Metab 77(6):1690–1694PubMedGoogle Scholar
  101. Mayer EA et al (2014) Gut microbes and the brain: paradigm shift in neuroscience. J Neurosci Off J Soc Neuroscic 34(46):15490–15496CrossRefGoogle Scholar
  102. Mayer EA, Tillisch K, Gupta A (2015) Gut/brain axis and the microbiota. J Clin Investig 125(3):926–938PubMedCrossRefGoogle Scholar
  103. McGrath CL et al (2013) Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry 70(8):821–829PubMedPubMedCentralCrossRefGoogle Scholar
  104. Milak MS et al (2009) Pretreatment regional brain glucose uptake in the midbrain on PET may predict remission from a major depressive episode after three months of treatment. Psychiatry Res 173(1):63–70PubMedPubMedCentralCrossRefGoogle Scholar
  105. Miller JM et al (2013) Brain serotonin 1A receptor binding as a predictor of treatment outcome in major depressive disorder. Biol Psychiatry 74(10):760–767PubMedPubMedCentralCrossRefGoogle Scholar
  106. Morón JA et al (2003) Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. Journal of Neuroscience the Official Journal of the Society for Neuroscience 23(24):8480CrossRefGoogle Scholar
  107. Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61(5):519–525PubMedCrossRefGoogle Scholar
  108. Myint A-M et al (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98(1–2):143–151PubMedCrossRefGoogle Scholar
  109. Nejad AB, Fossati P, Lemogne C (2013) Self-referential processing, rumination, and cortical midline structures in major depression. Front Hum Neurosci 7:666PubMedPubMedCentralCrossRefGoogle Scholar
  110. Nugent AC et al (2016) Preliminary differences in resting state MEG functional connectivity pre- and post-ketamine in major depressive disorder. Psychiatry Res Neuroimaging 254:56–66PubMedCrossRefGoogle Scholar
  111. Olbrich S, Arns MJIRoP (2013) EEG biomarkers in major depressive disorder: Discriminative power and prediction of treatment response 25(5):604–618Google Scholar
  112. Opel N et al (2019) Mediation of the influence of childhood maltreatment on depression relapse by cortical structure: a 2-year longitudinal observational study. The Lancet Psychiatry 6(4):318–326PubMedCrossRefGoogle Scholar
  113. Pemberton LA et al (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interf & Cytokine Res Off J Int Soc Interf & Cytokine Res 17(10):589–595CrossRefGoogle Scholar
  114. Peng D et al (2018) The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front psychiatry 9:552Google Scholar
  115. Pezawas L, Meyer-Lindenberg A (2010) Imaging genetics: Progressing by leaps and bounds. Neuroimage 53(3):801–803PubMedCrossRefGoogle Scholar
  116. Phillips ML et al (2003) Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiat 54(5):504–514PubMedCrossRefGoogle Scholar
  117. Phillips JL et al (2015a) Impact of monoamine-related gene polymorphisms on hippocampal volume in treatment-resistant depression. Acta Neuropsychiatr 27(6):353–361PubMedCrossRefGoogle Scholar
  118. Phillips ML et al (2015b) Identifying Predictors. Moderators, and Mediators of Antidepressant Response in Major Depressive Disorder: Neuroimaging Approaches. 172(2):124–138PubMedCrossRefGoogle Scholar
  119. Phillips ML et al (2015c) Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 172(2):124–138PubMedCrossRefGoogle Scholar
  120. Pirnia T et al (2016) Electroconvulsive therapy and structural neuroplasticity in neocortical, limbic and paralimbic cortex. Transl Psychiatry 6(6):e832PubMedPubMedCentralCrossRefGoogle Scholar
  121. Pizzagalli DA (2011) Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology 36(1):183–206PubMedCrossRefGoogle Scholar
  122. Price RB et al (2017a) Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biol Psychiatry 81(4):347–357PubMedCrossRefGoogle Scholar
  123. Price RB et al (2017b) Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology 42(13):2623–2632PubMedPubMedCentralCrossRefGoogle Scholar
  124. Qin J et al (2017) Reconfiguration of hub-level community structure in depressions: a follow-up study via diffusion tensor imaging. J Affect Disord 207:305–312PubMedCrossRefGoogle Scholar
  125. Qiu M et al (2018) Aberrant neural activity in patients with bipolar depressive disorder distinguishing to the unipolar depressive disorder: a resting-state functional magnetic resonance imaging study. Front psychiatry 9:238Google Scholar
  126. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31PubMedCrossRefGoogle Scholar
  127. Rajeev K et al (2015) Cardio-metabolic risk factors and cortical thickness in a neurologically healthy male population: results from the psychological, social and biological determinants of ill health (pSoBid) study. Neuroimage Clinical 9(3):e1Google Scholar
  128. Redlich R et al (2014) Brain morphometric biomarkers distinguishing unipolar and bipolar depression. A voxel-based morphometry-pattern classification approach. JAMA Psychiatry 71(11): 1222–1230PubMedPubMedCentralCrossRefGoogle Scholar
  129. Renteria ME et al (2017) Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl Psychiatry 7(5):e1116PubMedPubMedCentralCrossRefGoogle Scholar
  130. Richter-Levin G, Xu L (2018) How could stress lead to major depressive disorder? IBRO Rep 4:38–43PubMedPubMedCentralCrossRefGoogle Scholar
  131. Ritchey M et al (2011) Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res 45(5):577–587PubMedCrossRefGoogle Scholar
  132. Rosa MJ et al (2015) Sparse network-based models for patient classification using fMRI. Neuroimage 105:493–506PubMedPubMedCentralCrossRefGoogle Scholar
  133. Rosa CE et al (2017) Glutamatergic and neural dysfunction in postpartum depression using magnetic resonance spectroscopy. Psychiatry Res 265:18–25CrossRefGoogle Scholar
  134. Sacchet MD et al (2015) Support vector machine classification of major depressive disorder using diffusion-weighted neuroimaging and graph theory. Front Psychiatry 6:21PubMedPubMedCentralCrossRefGoogle Scholar
  135. Saleh A et al (2017) Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med 47(1):171–181PubMedCrossRefGoogle Scholar
  136. Sambataro F et al (2014) Revisiting default mode network function in major depression: evidence for disrupted subsystem connectivity. 44(10):2041Google Scholar
  137. Satomura Y et al (2019) Severity-dependent and -independent brain regions of major depressive disorder: A long-term longitudinal near-infrared spectroscopy study. J Affect Disord 243:249–254PubMedCrossRefGoogle Scholar
  138. Savitz J et al (2013) Inflammation and neurological disease-related genes are differentially expressed in depressed patients with mood disorders and correlate with morphometric and functional imaging abnormalities. Brain Behav Immun 31(1):161PubMedCrossRefGoogle Scholar
  139. Schmaal L et al (2016) Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol Psychiatry 21(6):806–812PubMedCrossRefGoogle Scholar
  140. Schmaal L et al (2017) Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol Psychiatry 22(6):900–909PubMedCrossRefGoogle Scholar
  141. Schoenfeld TJ et al (2017) Stress and loss of adult neurogenesis differentially reduce hippocampal volume. Biol Psychiatry 82(12):914–923PubMedPubMedCentralCrossRefGoogle Scholar
  142. Setiawan E et al (2015) Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry 72(3):268–275PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sharpley CF, Agnew LL (2011) Cytokines and depression: findings, issues, and treatment implications. Rev Neurosci 22(3):295PubMedCrossRefGoogle Scholar
  144. Sheline YI et al (2010) Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc Natl Acad Sci U S A 107(24):11020–11025PubMedPubMedCentralCrossRefGoogle Scholar
  145. Sheline YI et al (2012) Treatment course with antidepressant therapy in late-life depression. Am J Psychiatry 169(11):1185–1193PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shelton RC et al (2009) Elevated 5-HT 2A receptors in postmortem prefrontal cortex in major depression is associated with reduced activity of protein kinase A. Neuroscience 158(4):1406–1415PubMedCrossRefGoogle Scholar
  147. Shen T et al (2015) Increased cognition connectivity network in major depression disorder: a FMRI study. 12(2):227Google Scholar
  148. Shirayama Y et al (2017) Myo-inositol, glutamate, and glutamine in the prefrontal cortex, hippocampus, and amygdala in major depression. Biol Psychiatry: Cogn Neurosci Neuroimaging 2(2):196–204Google Scholar
  149. Siegle GJ, Carter CS, Thase ME (2006) Use of FMRI to predict recovery from unipolar depression with cognitive behavior therapy. Am J Psychiatry 163(4):735–738PubMedCrossRefGoogle Scholar
  150. Siegle GJ et al (2012) Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Arch Gen Psychiatry 69(9):913–924PubMedPubMedCentralCrossRefGoogle Scholar
  151. Singleton A, Hardy J (2011) A generalizable hypothesis for the genetic architecture of disease: pleomorphic risk loci. Hum Mol Genet 20(R2):R158–R162PubMedPubMedCentralCrossRefGoogle Scholar
  152. Smitha DFJEN (2009) Molecular tools for assessing human depression by positron emission tomography 19(9):611–628Google Scholar
  153. Straub J et al (2017) Successful group psychotherapy of depression in adolescents alters fronto-limbic resting-state connectivity. J Affect Disord 209:135–139PubMedCrossRefGoogle Scholar
  154. Su L et al (2014) Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. 14(1):1–7Google Scholar
  155. Suh JS et al (2019) Cortical thickness in major depressive disorder: a systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 88:287–302PubMedCrossRefGoogle Scholar
  156. Symms M et al (2004) A review of structural magnetic resonance neuroimaging. J Neurol Neurosurg Psychiatry 75(9):1235–1244PubMedPubMedCentralCrossRefGoogle Scholar
  157. Takizawa R et al (2014) Neuroimaging-aided differential diagnosis of the depressive state. Neuroimage 85(1):498–507PubMedCrossRefGoogle Scholar
  158. Tang S et al (2018) Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: a comparative meta-analysis. EBioMedicine 36:436–445PubMedPubMedCentralCrossRefGoogle Scholar
  159. Taylor WD et al (2011) One-year change in anterior cingulate cortex white matter microstructure: relationship with late-life depression outcomes. The American Journal of Geriatric Psychiatry 19(1):43–52PubMedPubMedCentralCrossRefGoogle Scholar
  160. Taylor WD et al (2012) AGTR1 gene variation: association with depression and frontotemporal morphology. Psychiatry Res 202(2):104–109PubMedPubMedCentralCrossRefGoogle Scholar
  161. Tekin S, Cummings JL (2002) Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update 53(2): 647–654Google Scholar
  162. Tekin Erguzel T, Tas C, Cebi M (2015) A wrapper-based approach for feature selection and classification of major depressive disorder-bipolar disorders. Comput Biol Med 64:127–37PubMedCrossRefGoogle Scholar
  163. Tillisch K et al (2013) Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology 144(7):1394–1401PubMedCrossRefGoogle Scholar
  164. Tozzi L et al (2016) Single-nucleotide polymorphism of the FKBP5 gene and childhood maltreatment as predictors of structural changes in brain areas involved in emotional processing in depression. Neuropsychopharmacology 41(2):487–497PubMedCrossRefPubMedCentralGoogle Scholar
  165. van der Schot AC et al (2009) Influence of genes and environment on brain volumes in twin pairs concordant and discordant for bipolar disorder. Arch Gen Psychiatry 66(2):142–151PubMedCrossRefPubMedCentralGoogle Scholar
  166. Viviani B et al (2003) Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the src family of kinases. J Neurosci 23(25):8692–8700PubMedPubMedCentralCrossRefGoogle Scholar
  167. Wang Z et al (2012) Abnormal default-mode network in angiotensin converting enzyme D allele carriers with remitted geriatric depression. Behav Brain Res 230(2):325–332PubMedCrossRefGoogle Scholar
  168. Wang L et al (2014a) Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Hum Brain Mapp 35(4):1154–1166PubMedCrossRefGoogle Scholar
  169. Wang L et al (2014b) Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging. Psychol Med 44(7):1417–1426PubMedCrossRefGoogle Scholar
  170. Wegener I et al (2015) Changes of explicitly and implicitly measured self-esteem in the treatment of major depression: evidence for implicit self-esteem compensation. Compr Psychiatry 58:57–67PubMedCrossRefGoogle Scholar
  171. Widge AS et al (2018) Electroencephalographic biomarkers for treatment response prediction in major depressive illness: a meta-analysis. Am J Psychiatry 176(1):44–56PubMedCrossRefGoogle Scholar
  172. Wilkin TJ et al (2009) Regimen simplification to Atazanavir-Ritonavir alone as maintenance antiretroviral therapy: final 48-week clinical and virologic outcomes. J Infect Dis 199(6):866–871PubMedPubMedCentralCrossRefGoogle Scholar
  173. Wise T et al (2016) Voxel-Based Meta-Analytical Evidence of Structural Disconnectivity in Major Depression and Bipolar Disorder. Biol Psychiatry 79(4):293–302PubMedCrossRefGoogle Scholar
  174. Wu HQ, Rassoulpour A, Schwarcz R (2007) Kynurenic acid leads, dopamine follows: a new case of volume transmission in the brain? Journal of Neural Transmission 114(1):33–41PubMedCrossRefGoogle Scholar
  175. Wu MJ et al (2015) Prediction of pediatric unipolar depression using multiple neuromorphometric measurements: a pattern classification approach. J Psychiatr Res 62:84–91PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wohleb ES et al (2011) ß-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity. J Neurosci 31(17):6277–6288Google Scholar
  177. Yang W et al (2016) Abnormal brain activation during directed forgetting of negative memory in depressed patients. J Affect Disord 190:880–888PubMedPubMedCentralCrossRefGoogle Scholar
  178. Yang XH et al (2017a) Anhedonia correlates with abnormal functional connectivity of the superior temporal gyrus and the caudate nucleus in patients with first-episode drug-naive major depressive disorder. J Affect Disord 218:284–290PubMedCrossRefGoogle Scholar
  179. Yang XH et al (2017b) White matter microstructural abnormalities and their association with anticipatory anhedonia in depression. Psychiatry Res 264:29–34PubMedCrossRefGoogle Scholar
  180. Yeh YW et al (2014) Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM. Int J Neuropsychopharmacol 18(3)Google Scholar
  181. Zalcman S et al (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2 and -6. Brain Res 643(1–2):40–49PubMedCrossRefGoogle Scholar
  182. Zeng LL et al (2012) Identifying major depression using whole-brain functional connectivity: a multivariate pattern analysis. 135(Pt 5):1498Google Scholar
  183. Zhai ZW et al (2019) Childhood trauma moderates inhibitory control and anterior cingulate cortex activation during stress. Neuroimage 185:111–118PubMedCrossRefGoogle Scholar
  184. Zhang J et al (2011) Disrupted brain connectivity networks in drug-naive, first-episode major depressive disorder. Biol Psychiatry 70(4):334–342PubMedCrossRefGoogle Scholar
  185. Zhang X et al (2014) First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network 9(1):e85241Google Scholar
  186. Zhang K et al (2016a) Molecular, Functional, and Structural Imaging of Major Depressive Disorder. Neurosci Bull 32(3):273–285PubMedPubMedCentralCrossRefGoogle Scholar
  187. Zhang X et al (2016b) Altered neuronal spontaneous activity correlates with glutamate concentration in medial prefrontal cortex of major depressed females: An fMRI-MRS study. J Affect Disord 201:153–161PubMedCrossRefGoogle Scholar
  188. Zhang FF et al (2018a) Brain structure alterations in depression: psychoradiological evidence. CNS Neurosci Ther 24(11):994–1003PubMedPubMedCentralCrossRefGoogle Scholar
  189. Zhang H et al (2019) Intrinsic gray-matter connectivity of the brain in major depressive disorder. J Affect Disord 251:78–85PubMedCrossRefGoogle Scholar
  190. Zhang HF, Mellor D, Peng DH (2018b) Neuroimaging genomic studies in major depressive disorder: a systematic review. CNS Neurosci Ther 24(11):1020–1036PubMedPubMedCentralCrossRefGoogle Scholar
  191. Zunszain PA, Hepgul N, Pariante CM (2012) Inflammation and depression. In: Behavioral neurobiology of depression and its treatment. Springer, pp 135–151Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Division of Mood Disorder, Shanghai Mental Health Center, School of MedicineShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Department of PsychiatryThe Affiliated Brain Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations