Advertisement

Phytochemical Analysis and Pharmaceutical Development from Sapindus spp.

  • Reetika Singh
  • Bechan Sharma
Chapter

Abstract

Plants can be considered as rich and renewable biochemical factory. Plants are primary source of medicine and primary health care. Ayurveda, a traditional medicine system, is totally based on the compounds that isolated from plants. A number of phytochemicals is extractable and used as raw material/intermediates for numerous scientific research and development of new valuable compounds. Various plant secondary metabolites are commercially important and utilized for the production of important pharmaceutical compounds. Plant-based herbal products are cost-effective with higher efficacy and lesser toxicity. Beside the different types of saponins, Sapindus species is also a rich source of variety of other phytocompounds such as alkaloids, phytosterols, phenolic compounds, tannins, flavonoids and glycosides. Every part of Sapindus named leaf, fruit, galls, roots stem contains variety of phytochemicals and that is responsible for the various biological activities. In vitro culture of Sapindus species are also containing good amount of these phytochemicals. The extracts of different parts of this plant also showed free radical scavenging, antimicrobial, reducing potential, anticancer, spermicidal, lipid peroxidation inhibition activity, etc.

Bibliography

  1. Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. The Saudi Pharmaceutical Journal, 21, 143–152.PubMedGoogle Scholar
  2. Arora, B., Bhadauria, P., Tripathi, D., & Sharma, A. (2012). Sapindus emarginatus: Phytochemistry & various biological activities. Indo Global Journal of Pharmaceutical Sciences, 2, 250–257.Google Scholar
  3. Azhar, I., Usmanghani, K., Perveen, S., Ali, M. S., & Ahmad, V. U. (1993). Two triterpenoidal saponins from S. mukorossi Gaertn. Pakistan Journal of Pharmaceutical Sciences, 6, 71–77.PubMedPubMedCentralGoogle Scholar
  4. Azhar, I., Usmanghani, K., Perveen, S., Ali, M. S., & Ahmad, V. U. (1994). Chemical constituents of S. mukorossi Gaertn. Pakistan Journal of Pharmaceutical Sciences, 7, 33–41.PubMedPubMedCentralGoogle Scholar
  5. Chappell, J. (2002). The genetics and molecular genetics of terpene and sterol origami. Current Opinion in Plant Biology, 5, 151–157.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Cheng, X. Y., Wei, T., Guo, B., Ni, W., & Liu, C. Z. (2005). Cistanche deserticola cell suspension cultures: Phenylethanoid glycosides biosynthesis and antioxidant activity. Process Biochemistry, 40, 3119–3124.CrossRefGoogle Scholar
  7. Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., Krivenchuk, P. E., & Zykova, N. Y. (1970). A tri terpene glycosides of S. mukorossi-D part 2 structure of sapindoside A and sapindoside B. Khim Prir Soedin (Tashk), 6, 218–221.Google Scholar
  8. Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973a). Tri terpene glycosides of S.mukorossi part 3 structure of sapindoside C. Chem of Natural Compounds (English Transltion of Khim Prir Soedin), 6, 380–381.CrossRefGoogle Scholar
  9. Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973b). Triterpene glycosides of S.mukorossi part 5 structure of sapindoside D. Khim Prir Soedin (Tashk), 6, 316–319.Google Scholar
  10. Chirva, V. Y., Kintya, P. K., Sosnovskii, V. A., & Zolotarev, B. M. (1973c). Triterpene glycosides of S.mukorossi part 5 structure of sapindoside E. Chemistry of Natural Compounds (English Transltion of Khim Prir Soedin), 6, 440–442.CrossRefGoogle Scholar
  11. Eklund, P. C., Langvik, O. K., Warna, J. P., Salmi, T. O., Willfor, S. M., & Sjoholm, R. E. (2005). Chemical studies on antioxidant mechanisms and free radical scavenging properties of lignans. Organic and Biomolecular Chemistry, 21, 3336–3347.CrossRefGoogle Scholar
  12. Fan, C. Q., & Yue, J. M. (2003). Biologically active phenols from Saussurea medusa. Bioorganic & Medicinal Chemistry, 11, 703–708.CrossRefGoogle Scholar
  13. Fauconneau, B., Waffo-teguop, P., Huguet, F., Barrier, L., Decendit, A., & Mjzrillon, J. M. (1997). Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro test. Life Sciences, 61, 2103–2110.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Francis, G., Kerem, Z., Makkar, H., & Becker, K. (2002). The biological action of saponins in animal systems: A review. The British Journal of Nutrition, 88, 587–605.PubMedCrossRefPubMedCentralGoogle Scholar
  15. George, B., & Shanmugam, S. (2014). Phytochemical screening and antimicrobial activity of fruits extract of Sapindus mukorossi. International Journal of Current Microbiology and Applied Sciences, 3, 604–611.Google Scholar
  16. George, E. F., Hall, M. A., & Klerk, J. D. (2008). Plant propagation by tissue culture. The Background Springer, 1, 65–75.Google Scholar
  17. Giri, L., Dhyani, P., Rawata, S., Bhatta, I. D., Nandia, S. K., Rawala, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: A rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1–6.CrossRefGoogle Scholar
  18. Gordon, M. H. (1990). The mechanism of antioxidant action in vitro, in food antioxidants. In B. J. F. Hudson (Ed.), Applied sciences (pp. 1–18). London: Elesvier.Google Scholar
  19. Goyal, S., Kumar, D., Menaria, G., & Singla, S. (2014). Medicinal plants of the genus sapindus (sapindaceae) – A review of their botany, phytochemistry, biological activity and traditional uses. Journal of Drug Delivery and Therapeutics, 4, 7–20.Google Scholar
  20. Gulcin, I., Berashvili, D., & Gepdiremen, A. (2005). Antiradical and antioxidant activity of total anthocyanins from Perilla pankenensis Decne. The Journal of Ethnopharmacology, 101, 287–293.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Gupta, D. R., & Ahmed, B. (1990). Emarginatosides B and C: Two new saponins from Sapindus emarginatus fruits. Indian Journal of Chemistry, 29B, 268–270.Google Scholar
  22. Hamburger, M., Scalanin, I., Hostettmann, K., Dyatmiko, W., & Sutarjadi. (2007). Acetylated saponins with molluscicidal activity from Sapindus rarak: Unambiguous structure determination by proton nuclear magnetic resonance and quantitative analysis. Phytochemical Analysis, 3, 231–237.CrossRefGoogle Scholar
  23. Hegazi, G. A. E. (2011). In vitro studies on Delonix elata L. – An endangered medicinal plant. World Applied Sciences Journal, 14, 679–686.Google Scholar
  24. Hempel, J., Pforte, H., Raab, B., Engst, W., Bohm, H., & Jacobasch, G. (1999). Flavonols and flavones of parsley cell suspension culture change the antioxidative capacity of plasma in rats. Nahrung, 43, 201–204.PubMedCrossRefPubMedCentralGoogle Scholar
  25. Huang, C., Liao, S. C., Chang, F. R., Kuo, Y. H., & Wu, Y. C. (2003). Molluscicidal Saponins from Sapindus mukorossi. Journal of Agricultural and Food Chemistry, 51, 4916–4919.Google Scholar
  26. Huang, D., Ou, B., & Prior, R. L. (2005). The chemistry behind antioxidant capacity assays. Journal of Agricultural and Food Chemistry, 53, 1841–1856.PubMedCrossRefGoogle Scholar
  27. Huang, H. C., Tsai, W. J., Morris-Natschke, S. L., Tokuda, H., Lee, K. H., & Wu, Y. C. (2006). Sapinmusaponins F-J, bioactive tirucallane-type saponins from the galls of Sapindus mukorossi. Journal of Natural Products, 69, 763–767.PubMedPubMedCentralGoogle Scholar
  28. Huang, H. C., Tsai, W. J., Liaw, C. C., Wu, S. H., Wu, Y. C., & Kuo, Y. H. (2007). Anti-platelet aggregation triterpene saponins from the galls of Sapindus mukorossi. Chemical & Pharmaceutical Bulletin (Tokyo), 55, 1412–1415.Google Scholar
  29. Jain, D., Daima, H. K., Kachhwaha, S., & Kothari, S. L. (2009). Synthesis of plant mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures, 4, 557–563.Google Scholar
  30. Janero, D. R. (1990). Malondialdehyde and thiobarbituric acidreactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radical Biology & Medicine, 9, 515–540.CrossRefGoogle Scholar
  31. Kalinowska, M., Zimowski, J., Paczkowski, C., & Wojciechowski, Z. A. (2005). The formation of sugar chains in triterpenoid saponins and glycoalkaloids. Phytochemistry Reviews, 4, 237–257.CrossRefGoogle Scholar
  32. Keser, S., Celik, S., Turkoglu, S., Yilmaz, O., & Turkoglu, I. (2012). Hydrogen peroxide radical scavenging and total antioxidant activity of Hawthorn. Chemistry Journal, 2, 9–12.Google Scholar
  33. Kim, S., Yang, M., Lee, O., & Kang, S. (2011). The antioxidant activity and the bioactive compound content of Stevia rebaudiana water extract. Food Science and Technology, 44, 1328–1332.Google Scholar
  34. Kimata, H., Nakashima, T., Kokubun, S., Nakayama, K., Mitima, Y., Kitahara, T., & Tanaka, O. (1983). Saponins of pericarps of Sapindus mukorossi Garetn. and solubilisation of monodesmosides by bisdesmosides. Chemical & Pharmaceutical Bulletin, 31, 1998–2005.CrossRefGoogle Scholar
  35. Kirby, J., & Keasling, J. D. (2009). Biosynthesis of plant isoprenoids: Perspectives for microbial engineering. Annual Review of Plant Biology, 60, 335–355.PubMedCrossRefGoogle Scholar
  36. Koleva, I. I., Van Beek, T. A., Linseen, J. P. H., De Groot, & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochemical Analysis, 10, 178–182.Google Scholar
  37. Kovacheva, E., Georgiev, M., Pashova, S., Angelova, M., & Ilieva, M. (2006). Radical quenching by rosmarinic acid from Lavandula vera MM cell culture. Zeitschrift für Naturforschung, 61C, 517–520.CrossRefGoogle Scholar
  38. Krishnan, P. N., Decruse, S. W., & Radha, R. K. (2011). Conservation of medicinal plants of Western Ghats, India and its sustainable utilization through in vitro technology. In Vitro Cellular & Developmental Biology: Plant, 47, 110–122.CrossRefGoogle Scholar
  39. Kumar, V., Murthy, K. N., Bhamid, S., Sudha, C. G., & Ravishankar, G. A. (2005). Genetically modified hairy roots of Withania somnifera Dunal: A potent source of rejuvenating principles. Rejuvenation Research, 8, 37–45.PubMedCrossRefGoogle Scholar
  40. Kumar, V., Moyo, M., Gruz, J., Subrtova, M., & Staden, J. V. (2015). Phenolic acid profiles and antioxidant potential of Pelargonium sidoides callus cultures. Industrial Crops and Products, 77, 402–408.CrossRefGoogle Scholar
  41. Kuo, Y., Huang, H. C., Kuo, L. M. Y., Hsu, Y. W., Lee, K. H., Chang, F. R., & Wu, Y. C. (2005). New demmarane-type saponins from galls of S. mukorossi. Journal of Agricultural and Food Chemistry, 53, 4722–4727.PubMedCrossRefGoogle Scholar
  42. Lai, H. Y., & Lim, Y. Y. (2011). Evaluation of antioxidant activities of the methanolic extracts of selected ferns in Malaysia. International Journal of Environmental Science and Development, 2, 442–447.CrossRefGoogle Scholar
  43. Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., Kim, Y. S., In, J. G., Yang, D. C., Yi, J. S., & Choi, Y. E. (2004). Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant & Cell Physiology, 45, 976–984.CrossRefGoogle Scholar
  44. Lee, W. S., Kim, J. R., Han, J. M., Jang, K. C., Sok, D. E., & Jeong, T. S. (2006). Antioxidant activities of abietane diterpenoids isolated from Torreya nucifera leaves. Journal of Agricultural and Food Chemistry, 54, 5369–5374.PubMedCrossRefGoogle Scholar
  45. Linde, H. (1979). Uberinhaltsstoffe der perikarpein von S. mukorossi gaertn. Archives of Pharmacal Research, 312, 416–425.Google Scholar
  46. Liu, C. Z., Murch, S. J., El Demerdash, M., & Saxena, P. K. (2004). Artemisia judaica L: Micropropagation and antioxidant activity. Journal of Biotechnology, 110, 63–71.PubMedCrossRefGoogle Scholar
  47. Lugato, D., Simao, M. J., Garcia, R., Mansur, E., & Pacheco, G. (2014). Determination of antioxidant activity and phenolic content of extracts from in vivo plants and in vitro materials of Passiflora alata Curtis. Plant Cell, Tissue and Organ Culture, 118, 339–346.CrossRefGoogle Scholar
  48. Maisarah, A. M., Nurul-Amira, B., Asmah, R., & Fauziah, O. (2013). Antioxidant analysis of different parts of Carica papaya. International Food Research Journal, 20, 1043–1048.Google Scholar
  49. McDonald, S., Prenzler, P. D., Autolovich, M., & Robards, K. (2001). Phenolic content and antioxidant activity of olive extracts. Food Chemistry, 73, 73–84.CrossRefGoogle Scholar
  50. Nabavi, S. M., Ebrahimzadeh, M. A., Nabavi, S. F., Hamidinia, A., & Bekhradnia, A. R. (2008). Determination of antioxidant activity, phenol and flavonoids content of Parrotia persica Mey. Pharmacology Online, 2, 560–567.Google Scholar
  51. Nagvani, V., Madhavi, Y., Rao, D. B., Rao, P. K., & Rao, T. R. (2010). Free radical scavenging activity and qualitative analysis of polyphenols by RP-HPLC inn the flowers of Couroupita guianensis Aubl. The Electronic Journal of Environmental, Agricultural and Food Chemistry, 9, 1471–1484.Google Scholar
  52. Ni, W., Hua, Y., Liu, H. Y., Teng, R. W., Kong, Y. C., Hu, X. Y., & Chen, C. X. (2006). Tirucallane-type triterpenoid saponins from the roots of S. mukorossi. Chemical and Pharmaceutical Bulletin, 54, 1443–1446.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.CrossRefGoogle Scholar
  54. Oleszek, W. A. (2000). Saponins. In Natural foods antimicrobial systems. Boca Raton: CRC Press, LLC.Google Scholar
  55. Orwa, C., Mutua, A., Kindt, R., Jamnadass, R., & Simons, A. (2009). Agroforestree database: A tree reference and selection guide version 4.0. http://www.worldagroforestry.org/af/treedb/
  56. Pal, R., Girhepunjem, K., Shrivastav, N., Hussain, M. M., & Thirumoorthy. (2011). Antioxidant and free radical scavenging activity of ethanolic extract of Morinda citrifolia. Annals of Biological Research, 2, 127–131.Google Scholar
  57. Pandey, N., Chaurasia, J. K., Tiwari, O. P., & Tripathi, Y. B. (2007). Antioxidant properties of different fractions of tubers from Pueraria tuberosa Linn. Food Chemistry, 105, 219–222.CrossRefGoogle Scholar
  58. Parsaeimehr, A., Sargsyan, E., & Javidni, K. (2010). A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules, 15, 1668–1678.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Petersen, M., & Simmonds, M. S. (2003). Rosmarinic acid. Phytochemistry, 62, 121–125.PubMedCrossRefGoogle Scholar
  60. Phillips, D. R., Rasbery, J. M., Bartel, B., & Matsuda, S. P. T. (2006). Biosynthetic diversity in plant triterpene cyclization. Current Opinion in Plant Biology, 9, 305–314.PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ravindra, P. V., & Narayan, M. S. (2003). Antioxidant activity of the anthocyanin from carrot (Daucus carota) callus culture. International Journal of Food Sciences and Nutrition, 54, 349–355.PubMedCrossRefGoogle Scholar
  62. Ravishankara, M. N., Shrivastava, N., Padh, H., & Rajani, M. (2002). Evaluation of antioxidant properties of root bark of Hemidesmus indicus R. Br. (Anantmul). Phytomedicine, 9, 153–160.PubMedCrossRefGoogle Scholar
  63. Ruch, R. J., Cheng, S. J., & Klaunig, J. E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 10, 1003–1008.PubMedCrossRefGoogle Scholar
  64. Saxena, D., Pal, R., Dwivedi, A. K., & Singh, S. (2004). Characterization of sapindosides in Sapindus mukorossi saponin (Reetha saponin) and quantitative determination of sapindoside B. Journal of Scientific and Industrial Research, 63, 181–186.Google Scholar
  65. Sengupta, A., Basu, S. P., & Saha, S. (1975). Triglyceride composition of S. mukorossi seed oil. Lipids, 10, 33–40.PubMedCrossRefGoogle Scholar
  66. Sharma, N., & Patni, V. (2013). Comparative analysis of total flavonoids, quercetin content and antioxidant activity of in vivo and in vitro plant parts of Grewia asiatica Mast. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 464–469.Google Scholar
  67. Sharma, A., Sati, S. C., Sati, O. P., Sati, D., & Kothiyal, S. K. (2011). Chemical constituents and bioactivities of genus Sapindus. International Journal of Research in Ayurveda and Pharmacy, 2, 403–409.Google Scholar
  68. Singh, R., Rai, M. K., & Kumari, N. (2015). Somatic embryogenesis and plant regeneration in Sapindusn mukorossi Gaertn. from leaf-derived callus induced with 6-Benzylaminopurine. Applied Biochemistry and Biotechnology, 177, 498–510.Google Scholar
  69. Soobrattee, M. A., Neergheen, V. S., Luximon-Ramma, A., Aruoma, O. I., & Bahorun, T. (2005). Phenolics as potential antioxidant therapeutic agents: Mechanisms and actions. Mutation Research, 579, 200–213.PubMedCrossRefGoogle Scholar
  70. Sreekala-devi, R., Radhamany, P. M., & Gayathri Devi, V. (2013). Investigation of the antioxidant principles from Psilanthus travancorensis (WT. ARN.) Leroy – An unexplored taxon of Rubiaceae. International Journal of Pharmaceutical Sciences, 5, 13–17.Google Scholar
  71. Suhagia, B. N., Rathod, I. S., & Sindhu, S. (2011). Sapindus mukorossi (Areetha): An overview. International Journal of Pharmaceutical Sciences and Research, 2, 1905–1913.Google Scholar
  72. Tadhani, M. B., Patel, V. H., & Subhash, R. (2007). In vitro antioxidant activities of Stevia rebaudiana leaves and callus. Journal of Food Composition and Analysis, 20, 323–329.CrossRefGoogle Scholar
  73. Takagi, K., Park, E. H., & Kato, H. (1980). Anti-inflammatory activities of hederagenin and crude saponin isolated from Sapindus mukorossi Gaertn. Chemical & Pharmaceutical Bulletin (Tokyo), 28, 1183–1188.Google Scholar
  74. Taylor, J. L. S., Rabe, T., McGaw, L. J., Jager, A. K., & Van-Staden, J. (2001). Towards the scientific validation of traditional medicinal plants. Plant Growth Regulation, 34, 23–37.CrossRefGoogle Scholar
  75. Teng, R. W., Ni, W., Hau, Y., & Chen, C. X. (2003). Two new tirucallane-type triterpenoid saponins from Sapindus mukorossi. Acta Botanica Sinica, 45, 369–372.Google Scholar
  76. Tepe, B., Daferera, D., Sokmen, A., Sokmen, M., & Polissiou, M. (2005). Antimicrobial and antioxidant activities of the essential oil and various extracts of Salvia tomentosa Miller (Lamiaceae). Food Chemistry, 90, 333–340.CrossRefGoogle Scholar
  77. Terahara, N., Callebaut, A., Ohba, R., Nagata, T., Ohnishi-Kameyama, M., & Suzuki, M. (2001). Acylated anthocyanidin 3-sophoroside-5-glucosides from Ajuga reptans flowers and the corresponding cell cultures. Phytochemistry, 58, 493–500.PubMedCrossRefGoogle Scholar
  78. Trajtemberg, S. P., Apostolo, N. M., & Fernadez, G. (2006). Calluses of Cynara cardunculus var. cardunculus cardoon (Asteraceae): Determination of cynarine and chlorogenic acid by automated high-performance capillary electrophoresis. In Vitro Cellular & Developmental Biology: Plant, 42, 534–537.CrossRefGoogle Scholar
  79. Trojanowska, M. R., Osbourn, A. E., Daniels, M. J., & Threlfall, D. R. (2000). Biosynthesis of avenacins and phytosterols in roots of Avena sativa cv. Image. Phytochemistry, 54, 153–164.PubMedCrossRefGoogle Scholar
  80. Upadhyay, A., & Singh, D. K. (2012). Pharmacological effects of Sapindus mukorossi. Revista do Instituto de Medicina Tropical de São Paulo, 54, 273–280.CrossRefPubMedPubMedCentralGoogle Scholar
  81. Upadhyay, R., Chaurasia, J. K., Tiwari, K. N., & Singh, K. (2013). Comparative antioxidant study of stem and stem induced callus of Phyllanthus fraternus webster – An important antiviral and hepatoprotective plant. Applied Biochemistry and Biotechnology, 171, 2153–2164.PubMedCrossRefGoogle Scholar
  82. Vincken, J. P., Heng, L., & Gruppen, H. (2007). Saponins, classification and occurrence in the plant kingdom. Phytochemistry, 68, 275–297.PubMedCrossRefGoogle Scholar
  83. Vogelsang, K., Schneider, B., & Petersen, M. (2006). Production of rosmarinic acid and a new rosmarinic acid 3-O-beta-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton. Planta, 223, 369–373.PubMedCrossRefGoogle Scholar
  84. Wijeratne, S. S., & Cuppett, S. L. (2007). Potential of rosemary (Rosmarinus officinalis L.) diterpenes in preventing lipid hydroperoxide-mediated oxidative stress in Caco-2 cells. Journal of Agricultural and Food Chemistry, 55, 1193–1199.PubMedCrossRefGoogle Scholar
  85. Xu, R., Fazio, G. C., & Matsuda, S. P. T. (2004). On the origins of triterpenoid skeletal diversity. Phytochemistry, 65, 261–291.PubMedCrossRefPubMedCentralGoogle Scholar
  86. Yao, H. K., Hui, C. H., Li-Ming, Y. K., Ya-Wen, H., Kuo-Hsiung, L., & Fang-Rong, C. (2005). New dammarane-type saponins from the galls of Sapindus mukorossi. Journal of Agricultural and Food Chemistry, 53, 4722–4727.CrossRefGoogle Scholar
  87. Yen, G. C., & Chen, H. Y. (1995). Antioxidant activity of various tea extracts in relation to their anti-mut agenicity. Journal of Agricultural and Food Chemistry, 43, 27–32.CrossRefGoogle Scholar
  88. Young, I. S., & Wood, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54, 176–186.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Yu, L., Zhao, M., Wang, J., Cui, C., Yang, B., Jiang, Y., & Zhao, Q. (2008). Antioxidant, immunomodulatory and anti-breast cancer activities of phenolic extract from pine (Pinus massoniana Lamb.) bark. Innovative Food Science and Emerging Technologies, 9, 122–128.CrossRefGoogle Scholar
  90. Zhu, H., Wang, Y., Liu, Y., Xia, Y., & Tang, T. (2010). Analysis of flavonoids in Portulaca oleracea L. by UVVis spectrophotometry with comparative study on different extraction technologies. Food Analytical Methods, 3, 90–97.CrossRefGoogle Scholar
  91. Zikova, N. I., & Krivenchuk, P. E. (1994). Chemical study of flavonoids from the leaves of Sapindus mukorossi Gaertn. Farmatsevtychnyi Zhurnal Article in Ukranian, 25, 43–45.Google Scholar
  92. Ni, W., Hua, Y., Teng, R. W., Kong, Y. C., & Chen, C. X. (2004). New tirucallane-type triterpenoid saponins from Sapindus mukorossi. Journal of Asian Natural Product Research, 6, 205–209.CrossRefGoogle Scholar
  93. Miller, H. E. (1971). A simplified method for the evaluation of antioxidants. Journal of the American Oil Chemists Society, 48, 91–91.CrossRefGoogle Scholar
  94. Havsteen, B. (1983). Flavonoids, a class of natural products of high pharmacological potency. Biochemical Pharmacology, 32, 1141–1148.PubMedCrossRefGoogle Scholar
  95. Abreu, A., Carulla, J. E., Lascano, C. E., Diaz, T. E., Kreuzer, M., & Hess, H. D. (2004). Effects of Sapindus saponaria fruits on ruminal fermentation and duodenal nitrogen flow of sheep fed a tropical grass diet with and without legume. Journal of Animal Sciences, 82, 1392–1400.Google Scholar
  96. Lemos, T. L. G., Mendes, A. L., Sousa, M. P., & Braz-Filho, R. (1992). New saponin from Sapindus saponaria. Fitoterapia, 93, 515–517.Google Scholar
  97. Lemos, T. L. G., Sousa, M. P., Mendes, A. L., & Braz-Filho, R. (1994). Saponin from Sapindus saponaria. Fitoterapia, 95, 557–558.Google Scholar
  98. Kasai, R., Nishi, M., Mizutani, K., Miyahara, I., Moriya, T., Miyahara, K., & Tanaka, O. (1988). Trifolioside II an acrylic sesquiterpene oligoglycoside from pericarp of S. trifoliatus. Phytochemistry, 27, 2309–2311.CrossRefGoogle Scholar
  99. Mahabusarakam, W., Towers, G. H. N., Tuntiwachwuttikul, P., & Wiriyachitra, P. (1990). Pesticidal triterpenoid saponins of the pericarps of S. emargiaus. Journal of the Science Society of Thailand, 16, 187.CrossRefGoogle Scholar
  100. Matkowski, A. (2008). Plant in vitro culture for the production of antioxidants — A review. Biotechnology Advances, 26, 548–560.PubMedCrossRefGoogle Scholar
  101. Ochiai, T., Ohno, S., Soeda, S., Tanaka, H., Shoyama, Y., & Shimeno, H. (2004). Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of alpha-tocopherol. Neuroscience Letters, 362, 61–64.PubMedCrossRefPubMedCentralGoogle Scholar
  102. Vanisree, M., & Tsay, H. S. (2004). Plant cell cultures — An alternative and efficient source for the production of biologically important secondary metabolites. International Journal of Applied Science and Engineering, 2, 29–48.Google Scholar
  103. Pavlov, A., Georgiev, V., & Ilieva, M. (2005). Betalain biosynthesis by red beet (Beta vulgaris L.) hairy root culture. Process Biochemistry, 40, 1531–1533.CrossRefGoogle Scholar
  104. Pavlov, A., & Bley, T. (2006). Betalains biosynthesis by Beta vulgaris L. hairy root culture in a temporary immersion cultivation system. Process Biochemistry, 41, 848–852.CrossRefGoogle Scholar
  105. Verpoorte, R., Contin, A., & Memelink, J. (2002). Biotechnology for the production of plant secondary metabolites. Phytochemistry Reviews, 1, 13–25.CrossRefGoogle Scholar
  106. Morikawa, T., Xie, Y., Asao, Y., Okamoto, M., Yamashita, C., Muraoka, O., Matsuda, H., Pongpiriyadacha, Y., Yuan, D., & Yoshikawa, M. (2009). Oleanane type triterpene oligoglycosides with pancreatic lipase inhibitory activity from the pericarps of S. rarak. Phytochemistry, 70, 1166–1172.PubMedCrossRefGoogle Scholar
  107. Ribeiro, A., Zani, C. L., Alves, T. M. A., Mendes, N. M., Hamburger, M., & Hostettmann, K. (1995). Molluscicidal saponins from the pericarp of Sapindus saponaria. International Journal of Pharmacology, 33, 177–180.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Reetika Singh
    • 1
  • Bechan Sharma
    • 1
  1. 1.Department of BiochemistryUniversity of AllahabadAllahabadIndia

Personalised recommendations