Advertisement

Microbial Agents in the Indoor Environment: Associations with Health

  • Dan NorbäckEmail author
  • Gui-Hong Cai
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

There is international consensus that damp buildings and indoor mould can increase the risk of asthma, rhinitis, bronchitis and respiratory tract infections but we do not know which types of microbial agents that are causing the observed adverse health effects. Microbial indoor exposure is a broader concept than microbial growth in buildings. Other sources of indoor microbial exposure include the outdoor environment, humans (crowdedness) and furry pet keeping. Microbial exposure can have different health effects depending on the dose, different exposure route, genetic disposition and the timing of exposure. Microbial stimulation linked to large microbial diversity in early life can protect against disease development, especially for allergic asthma and atopy. Protective effects are more often reported for bacterial exposure and adverse health effects are more often linked to mould exposure. There are many studies on health associations for indoor exposure to endotoxin, mainly from homes. The risk of getting atopic asthma may be less if you are exposed to endotoxin in childhood but the risk of non-atopic asthma may increase if exposed to endotoxin especially in adulthood. Moreover, genetic disposition modifies health effects of endotoxin. Epidemiological studies on muramic acid (from gram-positive bacteria) or ergosterol (from mould) are few. Studies on health effects of indoor exposure to beta-1-3-glucan (from mould) have conflicting results (positive as well as negative associations). Epidemiological studies on health effects of indoor exposure to mycotoxins are very few. Some studies have reported health associations for MVOC, but it is unclear to what extent MVOC has microbial sources in indoor environments. Many studies have reported health associations for fungal DNA, especially as a risk factor for childhood asthma at home. Since most studies on health effects of indoor exposure to mould, bacteria and microbial agents are cross-sectional, it is difficult to draw conclusions on causality. More prospective studies on indoor microbial exposure are needed and studies should include other indoor environments than homes, such as day care centers, schools, hospitals and offices.

Keywords

Mould Bacteria Endotoxin Beta-1-3-glucan Muramic acid Fungal DNA Microbial volatile organic compounds (MVOC) Mycotoxins Asthma Respiratory symptoms 

References

  1. 1.
    Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air. 2015;25:1–32.CrossRefGoogle Scholar
  2. 2.
    Yli-Pirilä T, Kusnetsov J, Hirvonen MR, Seuri M, Nevalainen A. Survival of amoebae on building materials. Indoor Air. 2009;19:113–21.PubMedCrossRefGoogle Scholar
  3. 3.
    Chen CM, Thiering E, Doekes G, Zock JP, Bakolis I, Norbäck D, Sunyer D, Villani S, Verlato G, Täubel M, Jarvis D, Heinrich J. Geographic variation and the determinants of domestic endotoxin levels in mattress dust in Europe. Indoor Air. 2012;22:24–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Cai GH, Bröms K, Mälarstig B, Zhao ZH, Kim JL, Svärdsudd K, Janson C, Norbäck D. Quantitative PCR analysis of fungal DNA in Swedish day care centers and comparison with building characteristics and allergen levels. Indoor Air. 2009;19:392–400.CrossRefGoogle Scholar
  5. 5.
    World Health Organization (WHO) Regional Office for Europe. Guidelines for indoor air quality: dampness and mould. Copenhagen: WHO Regional Office for Europe; 2009. p. 1–228.Google Scholar
  6. 6.
    Norbäck D, Zock JP, Plana E, Heinrich J, Svanes C, Sunyer J, Künzli N, Villani S, Olivieri M, Soon A, Jarvis D. Mould and dampness in dwelling places, and onset of asthma: the population-based cohort ECRHS. Occup Environ Med. 2013;70:325–31.CrossRefGoogle Scholar
  7. 7.
    Tischer CG, Heinrich J. Exposure assessment of residential mold, fungi and microbial components in relation to children’s health: achievements and challenges. Int J Hyg Environ Health. 2013;216:109–14.PubMedCrossRefGoogle Scholar
  8. 8.
    von Mutius E. The microbial environment and its influence on asthma prevention in early life. J Allergy Clin Immunol. 2016;137:680–9.CrossRefGoogle Scholar
  9. 9.
    Yang J, Kim YK, Kang TS, Jee YK, Kim YY. Importance of indoor dust biological ultrafine particles in the pathogenesis of chronic inflammatory lung diseases. Environ Health Toxicol. 2017;32:e2017021.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhang Z, Reponen T, Hershey GK. Fungal exposure and asthma: IgE and non-IgE-mediated mechanisms. Curr Allergy Asthma Rep. 2016;16:86.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    van Kenhove E, Dinne K, Janssens A, Laverge J. Overview and comparison of legionella regulations worldwide. Am J Infect Control. 2019;  https://doi.org/10.1016/j.ajic.2018.10.006.PubMedCrossRefGoogle Scholar
  12. 12.
    Fukutomi Y, Taniguchi M. Sensitization to fungal allergens: resolved and unresolved issues. Allergol Int. 2015;64:321–31.PubMedCrossRefGoogle Scholar
  13. 13.
    Luongo JC, Fennelly KP, Keen JA, Zhai ZJ, Jones BVV, Miller SL. Role of mechanical ventilation in the airborne transmission of infectious agents in buildings. Indoor Air. 2016;26:666–78.PubMedCrossRefGoogle Scholar
  14. 14.
    Verhoeff SP, van Wijnen JGH, Fischer P, Brunekreef B, Boleij JS, van Reenen ES, Samson RA. Presence of viable mould propagules in the indoor air of houses. Toxicol Ind Health. 1990;6:133–45.PubMedGoogle Scholar
  15. 15.
    Shin SK, Kim J, Ha SM, Oh HS, Chun J, Sohn J, Yi H. Metagenomic insights into the bioaerosols in the indoor and outdoor environments of childcare facilities. PLoS One. 2015;10:e0126960.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ. Indoor fungal diversity and asthma. A meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015;135:110–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Kanchongkittiphon W, Mendell MJ, Gaffin JM, Wang G, Phipatanakul W. Indoor environmental exposures and exacerbation of asthma: an update to the 2000 review by the Institute of Medicine. Environ Health Perspect. 2015;123:6–20.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Saijo Y, Kanazawa A, Araki A, Morimoto K, Nakayama K, Takigawa T, Tanaka M, Shibata E, Yoshimura T, Chjikara H, Kishi R. Relationships between mite allergen levels, mold concentrations, and sick building syndrome symptoms in newly built dwellings in Japan. Indoor Air. 2011;21:253–63.CrossRefGoogle Scholar
  19. 19.
    Fujiyoshi S, Tanaka D, Maruyama F. Transmission of airborne bacteria across built environments and its measurement standards: a review. Front Microbiol. 2017;8:2336.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Norbäck D, Wålinder R, Wieslander G, Smedje G, Erwall C, Venge P. Indoor air pollutants in schools: nasal patency and biomarkers in nasal lavage. Allergy. 2000;55:163–70.CrossRefGoogle Scholar
  21. 21.
    Walinder R, Norbäck D, Wessen B, Venge P. Nasal lavage biomarkers: effects of water damage and microbial growth in an office building. Arch Environ Health. 2001;56:30–6.PubMedCrossRefGoogle Scholar
  22. 22.
    Aydogdu H, Asan A, Tatman OM. Indoor and outdoor airborne bacteria in child day-care centers in Edirne City (Turkey), seasonal distribution and influence of meteorological factors. Environ Monit Assess. 2010;164:53–66.CrossRefGoogle Scholar
  23. 23.
    Andualem Z, Gizaw Z, Bogale L, Dagne H. Indoor bacterial load and its correlation to physical indoor air quality parameters in public primary schools. Multidicip Respir Med. 2019;14(1):2.CrossRefGoogle Scholar
  24. 24.
    Rintala H. Actinobacteria in indoor environments: exposures and respiratory health effects. Front Biosci (School Ed). 2011;3:1273–84.Google Scholar
  25. 25.
    Johansson E, Vesper S, Levin L, LeMasters G, Grinshpun S, Reponen T. Streptomycetes in house dust: associations with housing characteristics and endotoxin. Indoor Air. 2011;21:300–10.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Park JH, Cox-Ganser JM, White SK, Laney AS, Caulfield SM, Turner WA, Sumner AD, Kreiss K. Bacteria in a water-damaged building: associations of actinomycetes and non-tuberculosis mycobacteria with respiratory health in occupants. Indoor Air. 2017;27:24–33.PubMedCrossRefGoogle Scholar
  27. 27.
    Meheust D, Le Cann P, Reboux G, Millon L, Gangneux JP. Indoor fungal contamination: health risks and measurement methods in hospitals, homes and workplaces. Crit Rev Microbiol. 2014;40:248–60.PubMedCrossRefGoogle Scholar
  28. 28.
    Norbäck D, Cai GH. Dampness, indoor mould, fungal DNA and respiratory health-molecular methods in indoor epidemiology. Clin Exp Allergy. 2015;45:840–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Palmgren U, Ström G, Blomqvist G, Malmberg P. Collection of airborne micro-organisms on Nucleopore filter, estimation and analysis-CAMNEA method. J Appl Bacteriol. 1986;61:401–6.CrossRefGoogle Scholar
  30. 30.
    Björnsson E, Norbäck D, Janson C, Widström HJ, Palmgren U, Ström G, Boman G. Asthmatic symptoms and indoor levels of micro-organisms and house dust mites. Clin Exp Allergy. 1995;25:423–31.PubMedCrossRefGoogle Scholar
  31. 31.
    Simoni M, Cai GH, Norback D, Annesi-Maesano I, Lavaud F, Sigsgaard T, Wieslander G, Nystad W, Canciani M, Viegi G, Sestini P. Total viable moulds and fungal DNA in classrooms and associations with respiratory health and pulmonary function of European schoolchildren. Pediatr Allergy Immunol. 2011;22:843–52.CrossRefGoogle Scholar
  32. 32.
    Matheson MC, Abrahamson MJ, Dharmage SC, Forbes AB, Raven JM, Thien FC, Walters EH. Changes in indoor allergen and fungal levels predicts changes in asthma activity among young adults. Clin Exp Allergy. 2005;35:907–13.PubMedCrossRefGoogle Scholar
  33. 33.
    Smedje G, Norbäck D. Incidence of asthma diagnosis and self-reported allergy in relation to the school environment- a four-year follow-up study in schoolchildren. Int J Tuberc Lung Dis. 2001;5:1059–66.Google Scholar
  34. 34.
    Radon K. The two sides of the “endotoxin coin”. Occup Environ Med. 2006;63:73–8.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Norbäck D, Markowicz P, Cai GH, Hashim Z, Ali F, Zheng YW, Lai XX, Spangfort MD, Larsson L, Hashim JH. Endotoxin, ergosterol, fungal DNA and allergens in dust from schools in Johor Bahru, Malaysia-associations with asthma and respiratory infections in pupils. PLoS One. 2014;9:e883303.Google Scholar
  36. 36.
    Norbäck D, Hashim JH, Markowicz P, Cai GH, Hashim Z, Ali F, Larsson L. Endotoxin, ergosterol, muramic acid and fungal DNA in dust from schools in Johor Bahru, Malaysia – associations with rhinitis and sick building syndrome (SBS) in junior high school students. Sci Total Environ. 2016;545–546:95–103.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Teeuw KB, Vandenbroucke-Grauls CM, Verhoeff J. Airborne gram-negative bacteria and endotoxin in sick building syndrome. A study in Dutch governmental office buildings. Arch Intern Med. 1994;154:2339–45.PubMedCrossRefGoogle Scholar
  38. 38.
    Zhao Z, Sebastian A, Larsson L, Wang Z, Zhang Z, Norbäck D. Asthmatic symptoms among pupils in relation to microbial dust exposure in schools in Taiyuan, China. Pediatr Allergy Immunol. 2008;19:455–65.CrossRefGoogle Scholar
  39. 39.
    Karvonen AM, Hyvärinen A, Rintala H, Korppi M, Täubel M, Doekes G, Gehring U, Renz H, Pfefferle PI, Genuneit J, Keski-Nisula L, Remes S, Lampi J, von Mutius E, Pekkanen J. Quantity and diversity of environmental microbial exposure and development of asthma: a birth cohort study. Allergy. 2014;69:1092–101.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    van Strien RT, Engel R, Holst O, Bufe A, Eder W, Waser M, Braun-Fahrländer C, Riedler J, Nowak D, von Mutius E, Study Team ALEX. Microbial exposure of rural school children, as assessed by levels of N-acetyl-muramic acid in mattress dust, and its association with respiratory health. J Allergy Clin Immunol. 2004;113:860–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang X, Zhao Z, Nordqvist T, Larsson L, Sebastian A, Norbäck D. A longitudinal study of sick building syndrome among pupils in relation to microbial components in dust in schools in China. Sci Total Environ. 2011;409:5253–9.CrossRefGoogle Scholar
  42. 42.
    Tischer C, Zock JP, Valkonen M, Doekes G, Guerra S, Heederik D, Jarvis D, Norbäck D, Olivieri M, Sunyer J, Svanes C, Täubel M, Thiering G, Verlato G, Hyvärinen A, Heinrich J. Predictors of microbial agents in dust and respiratory health in the Ecrhs. BMC Pulm Med. 2015;15:48.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Valkonen M, Täubel M, Pekkanen J, Tischer C, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M, Janson C, Pin I, Gislason T, Jarvis D, Heinrich J, Hyvärinen A. Microbial characteristics in homes of asthmatic and non-asthmatic adults in the ECRHS cohort. Indoor Air. 2018;28:16–27.PubMedCrossRefGoogle Scholar
  44. 44.
    Park JH, Cox-Ganser JM, Kreiss SK, White SK, Rao CY. Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building. Environ Health Perspect. 2008;116:45–50.PubMedCrossRefGoogle Scholar
  45. 45.
    Cox-Ganser JM, Rao CY, Park JH, Schumpert JC, Kreiss K. Asthma and respiratory symptoms in hospital workers related to dampness and biological contaminants. Indoor Air. 2009;19:280–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Douwes J. (1→3)-Beta-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air. 2005;15:160–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Vesper SJ, Wymer LJ, Meklin T, Varma M, Stott R, Richardson M, et al. Comparison of populations of mould species in homes in the UK and USA using mould-specific quantitative PCR (MSQPCR). Lett Appl Microbiol. 2005;41:367–73.PubMedCrossRefGoogle Scholar
  48. 48.
    Norback D, Cai GH, Kreft I, Lampa E, Wieslander G. Fungal DNA in dust in Swedish day care centres: associations with respiratory symptoms, fractional exhaled nitric oxide (FeNO) and C-reactive protein (CRP) in serum among day care Centre staff. Int Arch Occup Environ Health. 2016;89:331–40.CrossRefGoogle Scholar
  49. 49.
    Cai GH, Jamal HH, Hashim Z, Ali F, Bloom E, Larsson L, Lampa E, Norbäck D. Fungal DNA, allergens, mycotoxins and associations with asthmatic symptoms among pupils in schools in Johor Bahru, Malaysia. Pediatr Allergy Immunol. 2011;22:290–7.CrossRefGoogle Scholar
  50. 50.
    Norbäck D, Hashim JH, Hashim Z, Cai G-H, Sooria V, Ismail SA, Wieslander G. Respiratory symptoms and fractional exhaled nitric oxide (FeNO) among students in Penang, Malaysia in relation to signs of dampness at school and fungal DNA in school dust. Sci Total Environ. 2017;577:148–54.CrossRefGoogle Scholar
  51. 51.
    Norbäck D, Hashim JH, Cai GH, Hashim Z, Ali F, Bloom E, Larsson L. Rhinitis, throat and dermal symptoms, headache and tiredness among students in schools from Johor Bahru, Malaysia: Associations with fungal DNA and mycotoxins in classroom dust. PLoS One. 2016;11:e01479976.CrossRefGoogle Scholar
  52. 52.
    Norbäck D, Hashim JH, Hashim Z, Sooria V, Ismail MS, Wieslander G. Ocular symptoms and tear film break up time (BUT) among junior high school students in Penang, Malaysia- associations with fungal DNA in school dust. Int J Hyg Environ Health. 2017;220:697–703.CrossRefGoogle Scholar
  53. 53.
    Norbäck D. An update on sick building syndrome. Curr Opin Allergy Clin Immunol. 2009;9:55–9.CrossRefGoogle Scholar
  54. 54.
    Bellanger AP, Reboux G, Roussel S, Grenouillet F, Didier-Scherer E, Dalphin JC, Millon L. Indoor fungal contamination of moisture-damaged and allergic patient housing analyzed using real-time PCR. Lett Appl Microbiol. 2009;49:260–6.PubMedCrossRefGoogle Scholar
  55. 55.
    Dannemiller KC, Gent JF, Leaderer BP, Peccia J. Indoor microbial communities: influence on asthma severity in atopic and noatopic children. J Allergy Clin Immunol. 2016;138:76–83.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Vesper S, McKinstry C, Haugland R, Wymer L, Bradham K, Ashley P, Cox D, Dewalt G, Friedman W. Development of an environmental relative moldiness index for US homes. J Occup Environ Med. 2007;49:829–33.PubMedCrossRefGoogle Scholar
  57. 57.
    Vesper S, McKinstry C, Cox D, Dewalt G. Correlation between ERMI values and other moisture and Mold assessments of homes in the American healthy homes survey. J Urban Health. 2009;86:850–60.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Vesper S, McKinstry C, Bradham K, Ashley P, Cox D, Dewalt G, Lin KT. Screening tools to estimate mold burdens in homes. J Occup Environ Med. 2009;51:80–6.PubMedCrossRefGoogle Scholar
  59. 59.
    Vesper S, Wakefield J, Ashley P, Cox D, Dewalt G, Friedman W. Geographic distribution of environmental relative moldiness index molds in USA homes. J Environ Public Health. 2011;2011:242457.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Vesper SJ, McKinstry C, Ashley P, Haugland RA, Yeatts K, Bradham K, Svendsen E. Quantitative PCR analysis of molds in the dust from homes of asthmatic children in North Carolina. J Environ Monit. 2007;9:826–30.PubMedCrossRefGoogle Scholar
  61. 61.
    Vesper SJ, McKinstry C, Haugland R, Neas L, Hudgens E, Heidenfelder B, Gallagher J. Higher environmental relative moldiness index (ERMIsm) values measured in Detroit homes of severely asthmatic children. Sci Total Environ. 2008;394:192–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Vesper S, Barnes C, Ciaccio CE, Johanns A, Kennedy K, Murphy JS, Nunez-Alvarez A, Sandel MT, Cox D, Dewalt G, Ashley PJ. Higher environmental relative moldiness index (ERMI) values measured in homes of asthmatic children in Boston, Kansas City, and San Diego. J Asthma. 2013;50:155–61.PubMedCrossRefGoogle Scholar
  63. 63.
    Reponen T, Vesper S, Levin L, Johansson E, Ryan P, Burkle J, Grinshpun SA, Zheng S, Bernstein DI, Lockey J, Villareal M, Khurana Hersehy GK, LeMastrers G. High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Ann Allergy Asthma Immunol. 2011;107:120–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Vesper S, Prill R, Wymer L, Adkins L, Williams R, Fulk F. Mold contamination in schools with either high or low prevalence of asthma. Pediatr Allergy Immunol. 2015;26:49–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Vesper SJ, Wymer L, Kennedy S, Grimsey LF. Decreased pulmonary function measured in children exposed to high environmental relative moldiness index homes. Open Respir Med J. 2013;7:83–6.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Sinclair R, Russell C, Kray G, Vesper S. Asthma risk associated with indoor mold contamination in hispanic communities in eastern Cochella valley, California. J Environ Public Health. 2018;2018:9350370.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    McSharry C, Vesper S, Wymer L, Howieson S, Chaudhuri R, Wright GR, Thomson NC. Decreased FEV1% in asthmatic adults in Scottish homes with high environmental relative moldiness index values. Clin Exp Allergy. 2015;45:902–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Blanc PD, Quinlan PJ, Katz PP, Balmes JR, Trupin L, Cisternas MG, Wymer L, Vesper SJ. Higher environmental relative moldiness index values measured in homes of adults with asthma, rhinitis or both conditions. Environ Res. 2013;122:98–101.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Pekkanen J, Valkonen M, Täubel M, Tischer C, Leppänen H, Kärkkäinen PM, Rintala H, Zock JP, Casas L, Probst-Hensch N, Forsberg B, Holm M, Janson C, Pin I, Gislason T, Jarvis D, Heinrich J, Hyvärinen A. Indoor bacteria and asthma in adults: a multicenter case-control study within ECRHSII. Eur Respir J. 2018;51(2):1701241.PubMedCrossRefGoogle Scholar
  70. 70.
    Johansson E, Reponen T, Vesper S, Levin L, Lockey J, Ryan P, Bernstein DI, Villareal M, Khurana Hershey GK, Schaffer C, Lemasters G. Microbial content of household dust associated with exhaled NO in asthmatic children. Environ Int. 2013;59:141–7.PubMedCrossRefGoogle Scholar
  71. 71.
    Wieslander G, Kumlin A, Norbäck D. Dampness and 2-ethyl-1-hexanol in floor construction of rehabilitation center: health effects in staff. Arch Environ Occup Health. 2010;65:3–11.CrossRefGoogle Scholar
  72. 72.
    Lorentzen JC, Juran SA, Nilsson M, Nordin S, Johanson G. Chloroanisoles may explain mold odor and represent a major indoor environment problem in Sweden. Indoor Air. 2016;26:207–18.CrossRefGoogle Scholar
  73. 73.
    Wessen B, Schoeps KO. Microbial volatile organic compounds-what substances can be found in sick buildings? Analyst. 1996;121:1203–5.CrossRefGoogle Scholar
  74. 74.
    Korpi A, Kasanen JP, Alaire Y, Kosma VM, Pasanen AL. Sensory irritation potency of some microbial volatile organic compounds (MVOCs) and a mixture of five MVOCs. Arch Envion Health. 1999;54:347–52.CrossRefGoogle Scholar
  75. 75.
    Fisher G, Dott W. Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol. 2003;179:75–82.CrossRefGoogle Scholar
  76. 76.
    Elke K, Begerow J, Oppermann H, Krämer U, Jermann E, Dunemann L. Determination of selected microbial volatile organic compounds by diffusion sampling and dual-column capillary GC-FID- a new feasible approach for the detection of an exposure to indoor mould fungi? J Environ Monit. 1999;1:455–2.CrossRefGoogle Scholar
  77. 77.
    Sahlberg B, Gunnbjörnsdottir M, Soon A, Jogi R, Gislason T, Wieslander G, Janson C, Norback D. Airborne molds and bacteria, microbial volatile organic compounds (MVOC), plasticizers and formaldehyde in dwellings in three north European cities in relation to sick building syndrome (SBS). Sci Total Environ. 2013;444:433–40.CrossRefGoogle Scholar
  78. 78.
    Schleibinger H, Laussmann D, Bornehag CG, Eis D, Rueden H. Microbial volatile organic compounds in the air of moldy and mold-free environments. Indoor Air. 2008;18:113–24.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Choi H, Schmidbauer N, Bornehag CG. Non-microbial sources of microbial volatile organic compounds. Environ Res. 2016;148:127–36.PubMedCrossRefGoogle Scholar
  80. 80.
    Korpi A, Järnberg J, Pasanen AL. Microbial volatile organic compounds. Crit Rev Toxicol. 2008;39:139–93.CrossRefGoogle Scholar
  81. 81.
    Hulin M, Moularat S, Kirschner S, Robine E, Mandin C, Annesi-Maesano I. Positive associations between respiratory outcomes and fungal index in rural inhabitants of a representative sample of French dwellings. Int J Hyg Environ Health. 2013;216:155–62.PubMedCrossRefGoogle Scholar
  82. 82.
    Araki A, Kanazawa A, Kawai T, Eitaki Y, Morimoto K, Nakayama K, Shibata K, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R. The relationship between exposure to microbial volatile organic compound and allergy prevalence in single-family homes. Sci Total Environ. 2012;423:18–26.PubMedCrossRefGoogle Scholar
  83. 83.
    Araki A, Kawai T, Eitaki Y, Kanazawa A, Morimoto K, Nakayama K, Shibata K, Tanaka M, Takigawa T, Yoshimura T, Chikara H, Saijo Y, Kishi R. Relationship between selected indoor volatile organic compounds, so called microbial VOC, and the prevalence of mucous membrane symptoms in single family homes. Sci Total Environ. 2010;408:228–2215.CrossRefGoogle Scholar
  84. 84.
    Kim JL, Elfman L, Mi Y, Wieslander G, Smedje G, Norbäck D. Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools-associations with asthma and respiratory symptoms in pupils. Indoor Air. 2007;17:153–63.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Ostry V, Malir F, Toman J, Grosse Y. Mycotoxins as human carcinogens-the IARC monographs classification. Mycotoxin Res. 2017;33:65–73.PubMedCrossRefGoogle Scholar
  86. 86.
    Peitzsch M, Sulyok M, Täubel M, Vishwanath V, Krop E, Borras-Santos A, Hyvärinen A, Nevalainen A, Krska R, Larsson L. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain. J Environ Monit. 2012;14:2044–53.CrossRefGoogle Scholar
  87. 87.
    Pieckova E. Adverse health effects of indoor molds. Arh Hig Rada Tokiskol. 2012;63:545–9.CrossRefGoogle Scholar
  88. 88.
    Miller JD, McMullin DR. Fungal secondary metabolites as harmful indoor air contaminants: 10 years on. Appl Microbiol Biotechnol. 2014;98:9953–66.PubMedCrossRefGoogle Scholar
  89. 89.
    Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public enigma. Toxicol Sci. 2018;104:4–26.CrossRefGoogle Scholar
  90. 90.
    Kirjavainen PV, Täubel M, Karvonen AM, Sulyok M, Tittanen P, Krska R, Hyvärinen A, Pekkanen J. Microbial secondary metabolites in homes in association with moisture damage and asthma. Indoor Air. 2016;26:448–4576.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Medical SciencesUppsala UniversityUppsalaSweden

Personalised recommendations