In-Vehicle Exposures at Transportation and the Health Concerns

Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)


In-vehicle environment is a special indoor environment, which is mobile, either open or closed. This chapter reviewed in-vehicle air quality and passenger exposures for roadway commuters, commercial airplanes, and marine transportation. The sources of pollutants in-vehicle can be categorized as the same as other indoor environments, including outdoor air, human activity, emission from building material and interior furnisher, and biological metabolic process from animals and microbes. However, the exposure in vehicles varies from now and then, influenced by window open/closed, speed, air flow, ventilation on/off, air conditioner on/off, pollutants from ambient outdoor air, interior material, and number of passengers. There are few studies on health condition of passengers, except infectious disease during airway transportation. Some health studies of related occupations are reviewed.


Commuters Airplanes Marine passenger vehicles Particles Microbial community VOCs 


  1. 1.
    Liu X, Frey HC. Modeling of in-vehicle human exposure to ambient fine particulate matter. Atmos Environ. 2011;45(27):4745–52.PubMedCentralCrossRefPubMedGoogle Scholar
  2. 2.
    Chan LY, Chan CY, Qin Y. The effect of commuting microenvironment on commuter exposures to vehicular emission in Hong Kong. Atmos Environ. 1999;33(11):1777–87.CrossRefGoogle Scholar
  3. 3.
    Moreno T, Reche C, Rivas I, Cruz Minguillón M, Martins V, Vargas C, et al. Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environ Res. 2015;142:495–510.PubMedCrossRefGoogle Scholar
  4. 4.
    Ramos MJ, Vasconcelos A, Faria M. Comparison of particulate matter inhalation for users of different transport modes in Lisbon. Transp Res Procedia. 2015;10:433–42.CrossRefGoogle Scholar
  5. 5.
    Xu B, Chen X, Xiong J. Air quality inside motor vehicles’ cabins: a review. Indoor Built Environ. 2016;27(4):452–65.CrossRefGoogle Scholar
  6. 6.
    Ott W, Switzer P, Willits N. Carbon monoxide exposures inside an automobile traveling on an urban arterial highway. Air Waste. 1994;44(8):1010–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Park JH, Spengler JD, Yoon DW, Dumyahn T, Lee K, Ozkaynak H. Measurement of air exchange rate of stationary vehicles and estimation of in-vehicle exposure. J Expo Anal Environ Epidemiol. 1998;8(1):65–78.PubMedGoogle Scholar
  8. 8.
    Xu B, Zhu Y. Quantitative analysis of the parameters affecting in-cabin to on-roadway (I/O) ultrafine particle concentration ratios. Aerosol Sci Technol. 2009;43(5):400–10.CrossRefGoogle Scholar
  9. 9.
    Morales Betancourt R, Galvis B, Balachandran S, Ramos-Bonilla JP, Sarmiento OL, Gallo-Murcia SM, et al. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments. Atmos Environ. 2017;157:135–45.CrossRefGoogle Scholar
  10. 10.
    Joshua SA, Thomas WK, Alexander HR, Shyam JD, Geetanjali K, Arvind C, et al. Concentrations of fine, ultrafine, and black carbon particles in auto-rickshaws in New Delhi, India. Atmos Environ. 2011;45(26):4470–80.CrossRefGoogle Scholar
  11. 11.
    Weichenthal S, Van Ryswyk K, Kulka R, Sun L, Wallace L, Joseph L. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study. Environ Sci Technol. 2015;49(1):597–605.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Xu B, Zhu Y. Investigation on lowering commuters’ in-cabin exposure to ultrafine particles. Transp Res Part D: Transp Environ. 2013;18:122–30.CrossRefGoogle Scholar
  13. 13.
    Sarnat JA, Golan R, Greenwald R, Raysoni AU, Kewada P, Winquist A, et al. Exposure to traffic pollution, acute inflammation and autonomic response in a panel of car commuters. Environ Res. 2014;133:66–76.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lee K, Sohn H, Putti K. In-vehicle exposures to particulate matter and black carbon. J Air Waste Manag Assoc. 2010;60(2):130–6.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Riediker M, Cascio WE, Griggs TR, Herbst MC, Bromberg PA, Neas L, et al. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care Med. 2004;169(8):934–40.PubMedCrossRefGoogle Scholar
  16. 16.
    Nguyen KH, King BA, Dube SR. Association between current asthma and secondhand smoke exposure in vehicles among adults living in four US states. Tob Control. 2015;24(4):376.PubMedCrossRefGoogle Scholar
  17. 17.
    Laumbach RJ, Kipen HM. Acute effects of motor vehicle traffic-related air pollution exposures on measures of oxidative stress in human airways. Ann N Y Acad Sci. 2010;1203:107–12.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Xiong J, Yang T, Tan J, Li L, Ge Y. Characterization of VOC emission from materials in vehicular environment at varied temperatures: correlation development and validation. PLoS One. 2015;10(10):e0140081.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Xu B, Wu Y, Gong Y, Wu S, Wu X, Zhu S, et al. Investigation of volatile organic compounds exposure inside vehicle cabins in China. Atmos Pollut Res. 2016;7(2):215–20.CrossRefGoogle Scholar
  20. 20.
    Yoshida T, Matsunaga I. A case study on identification of airborne organic compounds and time courses of their concentrations in the cabin of a new car for private use. Environ Int. 2006;32(1):58–79.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Fedoruk MJ, Kerger BD. Measurement of volatile organic compounds inside automobiles. J Expo Anal Environ Epidemiol. 2003;13(1):31–41.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dekoninck L, Int Panis L. A high resolution spatiotemporal model for in-vehicle black carbon exposure: quantifying the in-vehicle exposure reduction due to the euro 5 particulate matter standard legislation. Atmos. 2017;8(11):230.CrossRefGoogle Scholar
  23. 23.
    Fruin SA, Winer AM, Rodes CE. Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos Environ. 2004;38(25):4123–33.CrossRefGoogle Scholar
  24. 24.
    Alm S, Jantunen MJ, Vartiainen M. Urban commuter exposure to particle matter and carbon monoxide inside an automobile. J Expo Anal Environ Epidemiol. 1999;9(3):237–44.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Lee GW, Bae MJ, Yang JY, Son JW, Cho JL, Lee SG, et al. Decreased blood pressure associated with in-vehicle exposure to carbon monoxide in Korean volunteers. Environ Health Prev Med. 2017;22(1):34.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Hazlehurst MF, Spalt EW, Nicholas TP, Curl CL, Davey ME, Burke GL, et al. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the multi-ethnic study of atherosclerosis and air pollution. J Expo Sci Environ Epidemiol. 2018;28(4):371–80.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hsu T, Joice R, Vallarino J, Abu-Ali G, Hartmann EM, Shafquat A, et al. Urban transit system microbial communities differ by surface type and interaction with humans and the environment. mSystems. 2016;1(3):e00018-16.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Leung MH, Wilkins D, Li EK, Kong FK, Lee PK. Indoor-air microbiome in an urban subway network: diversity and dynamics. Appl Environ Microbiol. 2014;80(21):6760–70.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Walker AR, Grimes TL, Datta S, Datta S. Unraveling bacterial fingerprints of city subways from microbiome 16S gene profiles. Biol Direct. 2018;13(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Afshinnekoo E, Meydan C, Chowdhury S, Jaroudi D, Boyer C, Bernstein N, et al. Geospatial resolution of human and bacterial diversity with city-scale metagenomics. Cell Syst. 2015;1(1):72–87.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Joint Aviation Authorities. Joint aviation requirements. Cosmic radiation. 2001. JAR OPS 1.309.Google Scholar
  32. 32.
    European Committee for Standardization. High efficiency air filters (HEPA and ULPA)-Part 1: classification, performance testing, marking. EN1822–1. Brussels; 1998.Google Scholar
  33. 33.
    Lindgren T, Norback D. Cabin air quality: indoor pollutants and climate during intercontinental flights with and without tobacco smoking. Indoor Air. 2002;12(4):263–72.PubMedCrossRefGoogle Scholar
  34. 34.
    Norback D, Lindgren T, Wieslander G. Changes in ocular and nasal signs and symptoms among air crew in relation to air humidification on intercontinental flights. Scand J Work Environ Health. 2006;32(2):138–44.PubMedCrossRefGoogle Scholar
  35. 35.
    ASHRAE. Ventilation for acceptable indoor air quality. Atlanta: American Society of Heating RaA-CE; 2003.Google Scholar
  36. 36.
    Weisel C, Weschler CJ, Mohan K, Vallarino J, Spengler JD. Ozone and ozone byproducts in the cabins of commercial aircraft. Environ Sci Technol. 2013;47(9):4711–7.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Lindgren T, Andersson K, Norback D. Perception of cockpit environment among pilots on commercial aircraft. Aviat Space Environ Med. 2006;77(8):832–7.PubMedGoogle Scholar
  38. 38.
    Martinez I. Aircraft environmental control. 2015.
  39. 39.
    Frasch G, Kammerer L, Karofsky R, Schlosser A, Stegemann R. Radiation exposure of German aircraft crews under the impact of solar cycle 23 and airline business factors. Health Phys. 2014;107(6):542–54.PubMedCrossRefGoogle Scholar
  40. 40.
    van Netten C. Analysis and implications of aircraft disinsectants. Sci Total Environ. 2002;293(1–3):257–62.PubMedCrossRefGoogle Scholar
  41. 41.
    van Netten C, Leung V. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality. Arch Environ Health. 2001;56(2):181–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Winder C, Balouet JC. The toxicity of commercial jet oils. Environ Res. 2002;89(2):146–64.PubMedCrossRefGoogle Scholar
  43. 43.
    Solbu K, Daae HL, Olsen R, Thorud S, Ellingsen DG, Lindgren T, et al. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants. J Environ Monit. 2011;13(5):1393–403.PubMedCrossRefGoogle Scholar
  44. 44.
    Strid A, Smedje G, Athanassiadis I, Lindgren T, Lundgren H, Jakobsson K, et al. Brominated flame retardant exposure of aircraft personnel. Chemosphere. 2014;116:83–90.PubMedCrossRefGoogle Scholar
  45. 45.
    Dechow M, Sohn H, Steinhanses J. Concentrations of selected contaminants in cabin air of airbus aircrafts. Chemosphere. 1997;35(1):21–31.PubMedCrossRefGoogle Scholar
  46. 46.
    Rosenberger W, Beckmann B, Wrbitzky R. Airborne aldehydes in cabin-air of commercial aircraft: measurement by HPLC with UV absorbance detection of 2,4-dinitrophenylhydrazones. J Chromatogr B Analyt Technol Biomed Life Sci. 2016;1019:117–27.PubMedCrossRefGoogle Scholar
  47. 47.
    Osman S, La Duc MT, Dekas A, Newcombe D, Venkateswaran K. Microbial burden and diversity of commercial airline cabin air during short and long durations of travel. ISME J. 2008;2(5):482–97.PubMedCrossRefGoogle Scholar
  48. 48.
    McKernan LT, Wallingford KM, Hein MJ, Burge H, Rogers CA, Herrick R. Monitoring microbial populations on wide-body commercial passenger aircraft. Ann Occup Hyg. 2008;52(2):139–49.PubMedGoogle Scholar
  49. 49.
    McKernan LT, Burge H, Wallingford KM, Hein MJ, Herrick R. Evaluating fungal populations by genera/species on wide body commercial passenger aircraft and in airport terminals. Ann Occup Hyg. 2007;51(3):281–91.PubMedGoogle Scholar
  50. 50.
    Korves T, Piceno Y, Tom L, Desantis T, Jones B, Andersen G, et al. Bacterial communities in commercial aircraft high-efficiency particulate air (HEPA) filters assessed by PhyloChip analysis. Indoor Air. 2013;23(1):50–61.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weiss H, Hertzberg VS, Dupont C, Espinoza JL, Levy S, Nelson K, et al. The airplane cabin microbiome. Microb Ecol. 2019;77(1):87–95.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Fu X, Lindgren T, Guo M, Cai GH, Lundgren H, Norback D. Furry pet allergens, fungal DNA and microbial volatile organic compounds (MVOCs) in the commercial aircraft cabin environment. Environ Sci: Processes Impacts. 2013;15(6):1228–34.Google Scholar
  53. 53.
    Hines CJ, Waters MA, Larsson L, Petersen MR, Saraf A, Milton DK. Characterization of endotoxin and 3-hydroxy fatty acid levels in air and settled dust from commercial aircraft cabins. Indoor Air. 2003;13(2):166–73.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Hocking MB, Hocking D. Air quality in airplane cabins and similar enclosed spaces. Berlin: Springer; 2005.CrossRefGoogle Scholar
  55. 55.
    Mangili A, Gendreau MA. Transmission of infectious diseases during commercial air travel. Lancet. 2005;365(9463):989–96.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Olsen SJ, Chang HL, Cheung TY, Tang AF, Fisk TL, Ooi SP, et al. Transmission of the severe acute respiratory syndrome on aircraft. N Engl J Med. 2003;349(25):2416–22.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Vogt TM, Guerra MA, Flagg EW, Ksiazek TG, Lowther SA, Arguin PM. Risk of severe acute respiratory syndrome-associated coronavirus transmission aboard commercial aircraft. J Travel Med. 2006;13(5):268–72.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Young N, Pebody R, Smith G, Olowokure B, Shankar G, Hoschler K, et al. International flight-related transmission of pandemic influenza A(H1N1)pdm09: an historical cohort study of the first identified cases in the United Kingdom. Influenza Other Respir Viruses. 2014;8(1):66–73.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Neatherlin J, Cramer EH, Dubray C, Marienau KJ, Russell M, Sun H, et al. Influenza A(H1N1)pdm09 during air travel. Travel Med Infect Dis. 2013;11(2):110–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Martin IR, Wickens K, Patchett K, Kent R, Fitzharris P, Siebers R, et al. Cat allergen levels in public places in New Zealand. N Z Med J. 1998;111(1074):356–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Fu X, Lindgren T, Norback D. Medical symptoms among pilots associated with work and home environments: a 3-year cohort study. Aerosp Med Hum Perform. 2015;86(5):458–65.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Fu X, Lindgren T, Wieslander G, Janson C, Norback D. Respiratory illness and allergy related to work and home environment among commercial pilots. PLoS One. 2016;11(10):e0164954.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Jayaram V, Agrawal H, Welch WA, Miller JW, Cocker DR 3rd. Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel. Environ Sci Technol. 2011;45(6):2286–92.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Webster A, Reynolds G. Indoor Air Quality on Passenger Ships. In: Hocking M, editor. Air Quality in Airplane Cabins and Similar Enclosed Spaces. The Handbook of Environmental Chemistry, vol. 4H. Berlin: Springer; 2005. p. 335–49.CrossRefGoogle Scholar
  65. 65.
    Webster AD. The contribution of ventilation system design and maintenance to air quality on passenger ships. London: The Institute of Marine Engineers; 1997. p. 145–59.Google Scholar
  66. 66.
    World Health Organization. WHO guidelines for indoor air quality: dampness and mould. Geneva: WHO; 2009.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of Occupational and Environmental Health, School of Public HealthSun Yat-sen UniversityGuangzhouChina

Personalised recommendations