Advertisement

Indoor Thermal Environment and Cardiovascular Diseases

  • Keigo SaekiEmail author
  • Kenji Obayashi
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

First, we describe the importance of indoor thermal environment in terms of prevention from cardiovascular diseases based on the seasonal change of mortality, and the estimated burden of cold and heat-related mortality estimated by recently developed distributed lag nonlinear model. Second, we discuss the critical factors associated with the control of indoor thermal environments such as heating, insulation, and behavior. Finally, we review the existing evidence about the association between indoor temperature and health outcomes related to cardiovascular diseases.

Keywords

Winter excess mortality Cold-related mortality Heat-related mortality Time series analysis Lag time analysis Indoor thermal environment 

Abbreviations

EWDI

Excess winter death index

DLNM

Distributed lag nonlinear model

MMT

Minimum mortality temperature

References

  1. 1.
    Curwen M. Excess winter mortality: a British phenomenon? Health Trends. 1990;91(22):169–75.Google Scholar
  2. 2.
    Healy JD. Excess winter mortality in Europe: a cross country analysis identifying key risk factors. J Epidemiol Community Health. 2003;57:784–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fowler T, Southgate RJ, Waite T, Harrell R, Kovats S, Bone A, et al. Excess winter deaths in Europe: a multi-country descriptive analysis. Eur J Pub Health. 2015;25:339–45.CrossRefGoogle Scholar
  4. 4.
    Dunnigan MG, Harland WA, Fyfe T. Seasonal incidence and mortality of ischaemic heart-disease. Lancet. 1970;2:793–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Douglas AS, Dunnigan MG, Allan TM, Rawles JM. Seasonal variation in coronary heart disease in Scotland. J Epidemiol Community Health. 1995;49:575–82.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sheth T, Nair C, Muller J, Yusuf S. Increased winter mortality from acute myocardial infarction and stroke: the effect of age. J Am Coll Cardiol. 1999;33:1916–9.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Stewart S, McIntyre K, Capewell S, McMurray JJ. Heart failure in a cold climate. Seasonal variation in heart failure-related morbidity and mortality. J Am Coll Cardiol. 2002;39:760–6.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Arntz HR, Willich SN, Schreiber C, Bruggemann T, Stern R, Schultheiss HP. Diurnal, weekly and seasonal variation of sudden death. Population-based analysis of 24,061 consecutive cases. Eur Heart J. 2000;21:315–20.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gerber Y, Jacobsen SJ, Killian JM, Weston SA, Roger VL. Seasonality and daily weather conditions in relation to myocardial infarction and sudden cardiac death in Olmsted County, Minnesota, 1979 to 2002. J Am Coll Cardiol. 2006;48:287–92.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Shinkawa A, Ueda K, Hasuo Y, Kiyohara Y, Fujishima M. Seasonal variation in stroke incidence in Hisayama, Japan. Stroke. 1990;21:1262–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    de Steenhuijsen Piters WA, Algra A, van den Broek MF, Dorhout Mees SM, Rinkel GJ. Seasonal and meteorological determinants of aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis. J Neurol. 2013;260:614–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    The Eurowinter Group. Cold exposure and winter mortality from ischaemic heart disease, cerebrovascular disease, respiratory disease, and all causes in warm and cold regions of Europe. The Eurowinter Group. Lancet. 1997;349:1341–6.CrossRefGoogle Scholar
  13. 13.
    Liddell C, Morris C, Thomson H, Guiney C. Excess winter deaths in 30 European countries 1980-2013: a critical review of methods. J Public Health (Oxf). 2016;38:806–14.Google Scholar
  14. 14.
    Hajat S, Gasparrini A. The excess winter deaths measure: why its use is misleading for public health understanding of cold-related health impacts. Epidemiology. 2016;27:486–91.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Curriero F, Heiner K, Samet J, Zeger S, Strug L, Patz J. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol. 2002;155:80–7.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Basu R, Ostro BD. A multicounty analysis identifying the populations vulnerable to mortality associated with high ambient temperature in California. Am J Epidemiol. 2008;168:632–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Basu R. High ambient temperature and mortality: a review of epidemiologic studies from 2001 to 2008. Environ Health. 2009;8:40.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H. Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology. 2001;12:186–92.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Medina-Ramon M, Schwartz J. Temperature, temperature extremes, and mortality: a study of acclimatisation and effect modification in 50 US cities. Occup Environ Med. 2007;64:827–33.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Zanobetti A, Schwartz J. Temperature and mortality in nine US cities. Epidemiology. 2008;19:563–70.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gasparrini A, Armstrong B, Kovats S, Wilkinson P. The effect of high temperatures on cause-specific mortality in England and Wales. Occup Environ Med. 2012;69:56–61.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Braga AL, Zanobetti A, Schwartz J. The time course of weather-related deaths. Epidemiology. 2001;12:662–7.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med. 2014;33:881–99.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gasparrini A. Modelling lagged associations in environmental time series data: a simulation study. Epidemiology. 2016;27:835–42.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Gasparrini A, Leone M. Attributable risk from distributed lag models. BMC Med Res Methodol. 2014;14:55.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386:369–75.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Fu SH, Gasparrini A, Rodriguez PS, Jha P. Mortality attributable to hot and cold ambient temperatures in India: a nationally representative case-crossover study. PLoS Med. 2018;15:e1002619.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Scovronick N, Sera F, Acquaotta F, Garzena D, Fratianni S, Wright CY, et al. The association between ambient temperature and mortality in South Africa: A time-series analysis. Environ Res. 2018;161:229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yang J, Yin P, Zhou M, Ou CQ, Guo Y, Gasparrini A, et al. Cardiovascular mortality risk attributable to ambient temperature in China. Heart. 2015;101:1966–72.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Yang J, Ou CQ, Guo Y, Li L, Guo C, Chen PY, et al. The burden of ambient temperature on years of life lost in Guangzhou, China. Sci Rep. 2015;5:12250.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bai L, Li Q, Wang J, Lavigne E, Gasparrini A, Copes R, et al. Hospitalizations from hypertensive diseases, diabetes, and arrhythmia in relation to low and high temperatures: population-based study. Sci Rep. 2016;6:30283.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Onozuka D, Hagihara A. Out-of-hospital cardiac arrest risk attributable to temperature in Japan. Sci Rep. 2017;7:39538.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, et al. Temporal variation in heat-mortality associations: a multicountry study. Environ Health Perspect. 2015;123:1200–7.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chung Y, Noh H, Honda Y, Hashizume M, Bell ML, Guo YL, et al. Temporal changes in mortality related to extreme temperatures for 15 cities in Northeast Asia: adaptation to heat and maladaptation to cold. Am J Epidemiol. 2017;185:907–13.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Oudin Astrom D, Ebi KL, Vicedo-Cabrera AM, Gasparrini A. Investigating changes in mortality attributable to heat and cold in Stockholm, Sweden. Int J Biometeorol. 2018;62:1777.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Holowatz LA, Kenney WL. Peripheral mechanisms of thermoregulatory control of skin blood flow in aged humans. J Appl Physiol (1985). 2010;109:1538–44.CrossRefGoogle Scholar
  37. 37.
    Wilson TE, Sauder CL, Kearney ML, Kuipers NT, Leuenberger UA, Monahan KD, et al. Skin-surface cooling elicits peripheral and visceral vasoconstriction in humans. J Appl Physiol (1985). 2007;103:1257–62.CrossRefGoogle Scholar
  38. 38.
    Stergiou GS. Parallel morning and evening surge in stroke onset, blood pressure, and physical activity. Stroke. 2002;33:1480–6.PubMedCrossRefGoogle Scholar
  39. 39.
    Keatinge WR, Coleshaw SR, Cotter F, Mattock M, Murphy M, Chelliah R. Increases in platelet and red cell counts, blood viscosity, and arterial pressure during mild surface cooling: factors in mortality from coronary and cerebral thrombosis in winter. BMJ. 1984;289:1405–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Woodhouse PR, Khaw KT, Plummer M, Foley A, Meade TW. Seasonal variations of plasma fibrinogen and factor VII activity in the elderly: winter infections and death from cardiovascular disease. Lancet. 1994;343:435–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Schauble CL, Hampel R, Breitner S, Ruckerl R, Phipps R, Diaz-Sanchez D, et al. Short-term effects of air temperature on blood markers of coagulation and inflammation in potentially susceptible individuals. Occup Environ Med. 2012;69:670–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ghebre MA, Wannamethee SG, Rumley A, Whincup PH, Lowe GD, Morris RW. Prospective study of seasonal patterns in hemostatic factors in older men and their relation to excess winter coronary heart disease deaths. J Thromb Haemost. 2012;10:352–8.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Aylin P, Morris S, Wakefield J, Grossinho A, Jarup L, Elliott P. Temperature, housing, deprivation and their relationship to excess winter mortality in Great Britain, 1986-1996. Int J Epidemiol. 2001;30:1100–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Howden-Chapman P, Matheson A, Crane J, Viggers H, Cunningham M, Blakely T, et al. Effect of insulating existing houses on health inequality: cluster randomised study in the community. BMJ. 2007;334:460.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Howden-Chapman P, Pierse N, Nicholls S, Gillespie-Bennett J, Viggers H, Cunningham M, et al. Effects of improved home heating on asthma in community dwelling children: randomised controlled trial. BMJ. 2008;337:a1411.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shiue I. Cold homes are associated with poor biomarkers and less blood pressure check-up: English Longitudinal Study of Ageing, 2012-2013. Environ Sci Pollut Res Int. 2016;23:7055–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Modesti PA, Morabito M, Massetti L, Rapi S, Orlandini S, Mancia G, et al. Seasonal blood pressure changes: an independent relationship with temperature and daylight hours. Hypertension. 2013;61:908–14.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens. 2014;32:1582–9.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. The relationship between indoor, outdoor and ambient temperatures and morning BP surges from inter-seasonally repeated measurements. J Hum Hypertens. 2014;28:482–8.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Saeki K, Obayashi K, Kurumatani N. Platelet count and indoor cold exposure among elderly people: a cross-sectional analysis of the HEIJO-KYO study. J Epidemiol. 2017;27:562–7.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Saeki K, Obayashi K, Tone N, Kurumatani N. Daytime cold exposure and salt intake based on nocturnal urinary sodium excretion: a cross-sectional analysis of the HEIJO-KYO study. Physiol Behav. 2015;152:300–6.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Department of EpidemiologyNara Medical University School of MedicineNaraJapan

Personalised recommendations