Advertisement

Particles Matter, Nitrogen Dioxide and Sulfur Dioxide

  • Xin Zhang
Chapter
Part of the Current Topics in Environmental Health and Preventive Medicine book series (CTEHPM)

Abstract

Indoor air quality is a growing concern in the recent years as we spend the majority of time indoors. According to the Exposure Factors Handbook, adults in the USA spend approximately 80% of their time indoors. Among all the indoor air pollutants, particulate matter (PM), sulfur dioxide (SO2), and nitrogen dioxide (NO2) have been considered as the major risk factors for ill health and death. The idea that indoor PM, NO2, and SO2 can cause or exacerbate human diseases is supported by an evidence base that has been accumulating for several decades. The epidemiological study has convincingly indicated that exposure to PM, SO2, and NO2 are associated with acute and chronic adverse health effects, including changes in lung function and asthma attacks, respiratory and cardiovascular hospital admissions, mortality and morbidity, particularly among elderly and people with previous respiratory and cardiovascular diseases. Since air pollution is a complex mixture of compounds, and health effects are not universally observed following single exposure, further researches should focus on how to assess the association between combination of indoor air pollutants and health. Besides, more intervention should be involved to provide valid basis for protecting public health, especially for children.

Keywords

Human health Indoor Particles matter Nitrogen dioxide Sulfur dioxide 

References

  1. 1.
    U.S. EPA. Exposure factors handbook. 2011 edition (final report). EPA/600/R-09/052F. Washington, DC: U.S. Environmental Protection Agency; 2011.Google Scholar
  2. 2.
    U.S. EPA. Particulate matter (PM) pollution. U.S. Environmental Protection Agency. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#PM. Accessed 1 Jun 2018.
  3. 3.
    Pui DYH, Chen SC, Zuo Z. PM2.5 in China: measurements, sources, visibility and health effects, and mitigation. Particuology. 2014;13(2):1–26.CrossRefGoogle Scholar
  4. 4.
    Wagstrom KM, Baker KR, Leinbach AE, et al. Synthesizing scientific progress: outcomes from U.S. EPA’s carbonaceous aerosols and source apportionment STAR grants. Environ Sci Technol. 2014;48(18):10561–70.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    U.S. EPA. National ambient air quality standards (NAAQS Table). https://www.epa.gov/criteria-air-pollutants/naaqs-table. Accessed 1 Jun 2018.
  6. 6.
    WHO. Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide: global update 2005. Geneva: World Health Organization; 2006.Google Scholar
  7. 7.
    WHO, Global Health Observatory Map Gallery. World: concentration of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) in nearly 3000 urban areas, 2008–2015. World Health Organization. http://gamapserver.who.int/mapLibrary/app/searchResults.aspx. Accessed 1 Jun 2018.
  8. 8.
    U.S. EPA. Particulate matter (PM2.5) trends. https://www.epa.gov/air-trends/particulate-matter-pm25-trends. Accessed 1 Jun 2018.
  9. 9.
    Wang J, Zhao B, Wang S, et al. Particulate matter pollution over China and the effects of control policies. Sci Total Environ. 2017;584–585:426–47.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Karottki D, Spilak M, Frederiksen M, et al. Indoor and outdoor exposure to ultrafine, fine and microbiologically derived particulate matter related to cardiovascular and respiratory effects in a panel of elderly urban citizens. Int J Environ Res Public Health. 2015;12(2):1667–86.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang Y, Cai J, Wang S, et al. Review of receptor-based source apportionment research of fine particulate matter and its challenges in China. Sci Total Environ. 2017;586:917–29.PubMedCrossRefGoogle Scholar
  12. 12.
    Singh N, Murari V, Kumar M, et al. Fine particulates over South Asia: review and meta-analysis of PM2.5 source apportionment through receptor model. Environ Pollut. 2017;223:121–36.PubMedCrossRefGoogle Scholar
  13. 13.
    Hassanvand MS, Naddafi K, Faridi S, et al. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos Environ. 2014;82(1):375–82.CrossRefGoogle Scholar
  14. 14.
    Amato F, Rivas I, Viana M, et al. Sources of indoor and outdoor PM2.5 concentrations in primary schools. Sci Total Environ. 2014;490:757–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Long CM, Suh HH, Koutrakis P. Characterization of indoor particle sources using continuous mass and size monitors. J Air Waste Manage Assoc. 2000;50(7):1236–50.CrossRefGoogle Scholar
  16. 16.
    Bekö G, Weschler CJ, Wierzbicka A, et al. Ultrafine particles: exposure and source apportionment in 56 Danish homes. Environ Sci Technol. 2013;47(18):10240–8.PubMedGoogle Scholar
  17. 17.
    Liang CS, Duan FK, He KB, et al. Review on recent progress in observations, source identifications and countermeasures of PM2.5. Environ Int. 2016;86:150–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Hu W, Downward GS, Reiss B, et al. Personal and indoor PM2.5 exposure from burning solid fuels in vented and unvented stoves in a rural region of China with a high incidence of lung cancer. Environ Sci Technol. 2014;48(15):8456–64.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Apte JS, Marshall JD, Cohen AJ, et al. Addressing global mortality from ambient PM2.5. Environ Sci Technol. 2015;49(13):8057–66.PubMedCrossRefGoogle Scholar
  20. 20.
    Liu Q, Xu C, Ji G, et al. Effect of exposure to ambient PM2.5 pollution on the risk of respiratory tract diseases: a meta-analysis of cohort studies. J Biomed Res. 2017;31(2):56–68.Google Scholar
  21. 21.
    Lim SS, Vos T, Flaxman AD, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2224–60.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lelieveld J, Pöschl U. Chemists can help to solve the air-pollution health crisis. Nature. 2017;551(7680):291–3.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Pun VC, Kazemiparkouhi F, Manjourides J, et al. Long-term PM2.5 exposures and respiratory, cancer and cardiovascular mortality in American older adults. Am J Epidemiol. 2017;186(8):961–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lin H, Guo Y, Di Q, et al. Consumption of fruit and vegetables might mitigate the adverse effects of ambient PM2.5 on lung function among adults. Environ Res. 2018;160:77–82.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Zhang X, Fan Q, Bai X, et al. Levels of fractional exhaled nitric oxide in children in relation to air pollution in Chinese day care centres. Int J Tuberc Lung Dis. 2018;22(7):813–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Michael P, Emily S, Paul M, et al. Sri Lanka pilot study to examine respiratory health effects and personal PM2.5 exposures from cooking indoors. Int J Environ Res Public Health. 2016;13(8):E791.CrossRefGoogle Scholar
  27. 27.
    Mccormack MC, Belli AJ, Kaji DA, et al. Obesity as a susceptibility factor to indoor particulate matter health effects in COPD. Eur Respir J. 2015;45(5):1248–57.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Huang F, Pan B, Wu J, et al. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: a meta-analysis. Oncotarget. 2017;8(26):43322–31.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Brook RD, Rajagopalan S, Pope CA, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.PubMedCrossRefGoogle Scholar
  30. 30.
    Dutta A, Ray MR, Banerjee A. Systemic inflammatory changes and increased oxidative stress in rural Indian women cooking with biomass fuels. Toxicol Appl Pharmacol. 2012;261(3):255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Scheers H, Jacobs L, Casas L, et al. Long-term exposure to particulate matter air pollution is a risk factor for stroke: meta-analytical evidence. Stroke. 2015;46(11):3058–66.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Desikan A, Crichton S, Hoang U, et al. Effect of exhaust- and nonexhaust-related components of particulate matter on Long-term survival after stroke. Stroke. 2016;47(12):2916–22.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    O’Donnell MJ, Wellenius GA. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. Epidemiology. 2011;22(3):422–31.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Liu H, Tian Y, Xu Y, et al. Ambient particulate matter concentrations and hospitalization for stroke in 26 Chinese cities: a case-crossover study. Stroke. 2017;48(8):2052–9.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Huang F, Luo Y, Guo Y, et al. Particulate matter and hospital admissions for stroke in Beijing, China: modification effects by ambient temperature. J Am Heart Assoc. 2016;5(7):e003437.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Snider G, Carter E, Clark S, et al. Impacts of stove use patterns and outdoor air quality on household air pollution and cardiovascular mortality in southwestern China. Environ Int. 2018;117:116–24.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wu CF, Shen FH, Li YR, et al. Association of short-term exposure to fine particulate matter and nitrogen dioxide with acute cardiovascular effects. Sci Total Environ. 2016;569–570:300–5.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Coogan PF, White LF, Yu J, et al. PM2.5 and diabetes and hypertension incidence in the black women’s health study. Epidemiology. 2015;27(2):202–10.Google Scholar
  39. 39.
    U.S. EPA. Nitrogen dioxide (NO2) pollution. U.S. Environmental Protection Agency. https://www.epa.gov/no2-pollution. Accessed 1 Jun 2018.
  40. 40.
    Esplugues A, Ballester F, Estarlich M, et al. Indoor and outdoor concentrations and determinants of NO2 in a cohort of 1-year-old children in Valencia, Spain. Indoor Air. 2010;20(3):213–23.PubMedCrossRefGoogle Scholar
  41. 41.
    Challoner A, Gill L. Indoor/outdoor air pollution relationships in ten commercial buildings: PM2.5 and NO2. Build Environ. 2014;80:159–73.CrossRefGoogle Scholar
  42. 42.
    Branco PTBS, Nunes RAO, Alvim-Ferraz MCM, et al. Children’s exposure to indoor air in urban nurseries--part II: gaseous pollutants’ assessment. Environ Res. 2015;142:662–70.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Park SS, Cho SY. Performance evaluation of an in situ nitrous acid measurement system and continuous measurement of nitrous acid in an indoor environment. J Air Waste Manage Assoc. 2010;60(12):1434–42.CrossRefGoogle Scholar
  44. 44.
    Dedele A, Miskinyte A. Seasonal variation of indoor and outdoor air quality of nitrogen dioxide in homes with gas and electric stoves. Environ Sci Pollut Res. 2016;23(17):17784–92.CrossRefGoogle Scholar
  45. 45.
    Crouse DL, Peters PA, Hystad P, et al. Ambient PM2.5, O3, and NO2 exposures and associations with mortality over 16 years of follow-up in the Canadian census health and environment cohort (CanCHEC). Environ Health Perspect. 2015;123(11):1180–6.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Faustini A, Rapp R, Forastiere F. Nitrogen dioxide and mortality: review and meta-analysis of long-term studies. Eur Respir J. 2014;44(3):744–53.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zúñiga J, Tarajia M, Herrera V, et al. Assessment of the possible association of air pollutants PM10, O3, NO2 with an increase in cardiovascular, respiratory, and diabetes mortality in Panama City: a 2003 to 2013 data analysis. Medicine. 2016;95(2):e2464.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Snowden JM, Mortimer KM, Kang Dufour MS, et al. Population intervention models to estimate ambient NO2 health effects in children with asthma. J Expo Sci Environ Epidemiol. 2014;25:567–73.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Cibella F, Cuttitta G, Della Maggiore R, et al. Effect of indoor nitrogen dioxide on lung function in urban environment. Environ Res. 2015;138:8–16.CrossRefGoogle Scholar
  50. 50.
    Guerriero C, Chatzidiakou L, Cairns J, et al. The economic benefits of reducing the levels of nitrogen dioxide (NO2) near primary schools: the case of London. J Environ Manag. 2016;181:615–22.CrossRefGoogle Scholar
  51. 51.
    Choo CP, Jalaludin J. An overview of indoor air quality and its impact on respiratory health among Malaysian school-aged children. Rev Environ Health. 2015;30(1):9–18.PubMedGoogle Scholar
  52. 52.
    Paulin LM, Diette GB, Scott M, et al. Home interventions are effective at decreasing indoor nitrogen dioxide concentrations. Indoor Air. 2014;24(4):416–24.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Hansel NN, Mccormack MC, Belli AJ, et al. In-home air pollution is linked to respiratory morbidity in former smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013;187(10):1085–90.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kumar R, Nagar JK, Goel N, et al. Indoor air pollution and asthma in children at Delhi, India. Pneumonol Alergol Pol. 2015;83(4):275–82.PubMedCrossRefGoogle Scholar
  55. 55.
    Hoek G, Krishnan RM, Beelen R, et al. Long-term air pollution exposure and cardio- respiratory mortality: a review. Environ Health. 2013;12(1):43.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tong L, Li K, Zhou Q. Promoted relationship of cardiovascular morbidity with air pollutants in a typical Chinese urban area. PLoS One. 2014;9(9):e108076.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Mills IC, Atkinson RW, Kang S, et al. Quantitative systematic review of the associations between short-term exposure to nitrogen dioxide and mortality and hospital admissions. BMJ Open. 2015;5(5):e006946.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Janghorbani M, Momeni F, Mansourian M. Systematic review and metaanalysis of air pollution exposure and risk of diabetes. Eur J Epidemiol. 2014;29(4):231–42.PubMedCrossRefGoogle Scholar
  59. 59.
    Balti EV, Echouffotcheugui JB, Yako YY, et al. Air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2014;106(2):161–72.PubMedCrossRefGoogle Scholar
  60. 60.
    Perez L, Grize L, Infanger D, et al. Associations of daily levels of PM10 and NO2 with emergency hospital admissions and mortality in Switzerland: trends and missed prevention potential over the last decade. Environ Res. 2015;140:554–61.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Cooper KR, Alberti RR. Effect of kerosene heater emissions on indoor air quality and pulmonary function. Am Rev Respir Dis. 1984;129(4):629–31.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Blaszczyk E, Rogula-Kozlowska W, Klejnowski K, et al. Indoor air quality in urban and rural kindergartens: short-term studies in Silesia, Poland. Air Qual Atmos Health. 2017;10(10):1207–20.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lee K, Bartell SM, Paek D. Interpersonal and daily variability of personal exposures to nitrogen dioxide and sulfur dioxide. J Expo Anal Environ Epidemiol. 2004;14(2):137–43.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Khaniabadi YO, Polosa R, Chuturkova RZ, et al. Human health risk assessment due to ambient PM10 and SO2 by an air quality modeling technique. Process Saf Environ Prot. 2017;111:346–54.CrossRefGoogle Scholar
  65. 65.
    Hong-Qun MA, Lian-Hua C. Meta-analysis on health effects of air pollutants (SO2 and NO2) in the Chinese population. Occup Health. 2016;32(8):1038–44.Google Scholar
  66. 66.
    Mabahwi NAB, Leh OLH, Omar D. Human health and wellbeing: human health effect of air pollution. Procedia Soc Behav Sci. 2014;153:221–9.CrossRefGoogle Scholar
  67. 67.
    Ozcan NS, Cubukcu KM. Evaluation of air pollution effects on asthma disease: the case of Izmir. Procedia Soc Behav Sci. 2015;202:448–55.CrossRefGoogle Scholar
  68. 68.
    Jung SJ, Mehta JS, Tong L. Effects of environment pollution on the ocular surface. Ocul Surf. 2018;16(2):198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Juanjuan Z, Jihong D, Li Y, et al. Air pollutants, climate, and the prevalence of Pediatric asthma in urban areas of China. Biomed Res Int. 2016;2016:1–8.Google Scholar
  70. 70.
    Zhao Z, Sadig ME, Kalsbeek WD, et al. Asthmatic symptoms among pupils in relation to winter indoor and outdoor air pollution in schools in Taiyuan. China Environ Health Perspect. 2007;116(1):90–7.CrossRefGoogle Scholar
  71. 71.
    Yeatts K, et al. Indoor air pollutants and health in the United Arab Emirates. Environ Health Perspect. 2012;120(5):687–94.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Zhou Y, Zou Y, Li X, et al. Lung function and incidence of chronic obstructive pulmonary disease after improved cooking fuels and kitchen ventilation: a 9-year prospective cohort study. PLoS Med. 2014;11(3):e1001621.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Euler GL, Abbey DE, Magie AR, et al. Chronic obstructive pulmonary disease symptom effects of long-term cumulative exposure to ambient levels of total oxidants and nitrogen dioxide in California seventh-day Adventist residents. Arch Environ Health. 1988;42(4):213–22.Google Scholar
  74. 74.
    Goudarzi G, Geravandi S, Idani E, et al. An evaluation of hospital admission respiratory disease attributed to sulfur dioxide ambient concentration in Ahvaz from 2011 through 2013. Environ Sci Pollut Res. 2016;23(21):22001–7.CrossRefGoogle Scholar
  75. 75.
    Ran L, Ning J, Qichen L, et al. Impact of air pollutants on outpatient visits for acute respiratory outcomes. Int J Environ Res Public Health. 2017;14(1):E47.CrossRefGoogle Scholar
  76. 76.
    Chen R, Huang W, Wong C, et al. Short-term exposure to sulfur dioxide and daily mortality in 17 Chinese cities: the China air pollution and health effects study (CAPES). Environ Res. 2012;118:101–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Çapraz Ö, Efe B, Deniz A. Study on the association between air pollution and mortality in İstanbul, 2007–2012. Atmos Pollut Res. 2016;7(1):147–54.CrossRefGoogle Scholar
  78. 78.
    Khaniabadi YO, Daryanoosh SM, Hopke PK, et al. Acute myocardial infarction and COPD attributed to ambient SO2 in Iran. Environ Res. 2017;156:683–7.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Garelnabi M, Uzoigwe J, Prum T, et al. The emerging role of outdoor and indoor air pollution in cardiovascular disease. N Am J Med Sci. 2013;5(8):445–53.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lin Y, Zhou L, Xu J, et al. The impacts of air pollution on maternal stress during pregnancy. Sci Rep. 2017;7:40956.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Jacobs M, Zhang G, Chen S, et al. The association between ambient air pollution and selected adverse pregnancy outcomes in China: a systematic review. Sci Total Environ. 2017;579:1179–92.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Lin CC, Yang SK, Lin KC, et al. Multilevel analysis of air pollution and early childhood neurobehavioral development. Int J Environ Res Public Health. 2014;11(7):6827–41.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Knol AB, Hartog JJD, Boogaard H, et al. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways. Part Fibre Toxicol. 2009;6(1):19.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zeng XW, Vivian E, Mohammed K, et al. Long-term ambient air pollution and lung function impairment in Chinese children from a high air pollution range area: the seven Northeastern cities (SNEC) study. Atmos Environ. 2016;138:144–51.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Xin Zhang
    • 1
  1. 1.Institute of Environmental ScienceShanxi UniversityTaiyuanChina

Personalised recommendations