Advertisement

Advanced Production Technologies of Potato

  • Tanveer Ahmad
  • Rana Muhammad Sabir Tariq
  • Qumer Iqbal
  • Sajjad Hussain
  • Aamir Nawaz
  • Shakeel AhmadEmail author
Chapter

Abstract

Potato (Solanum tuberosum L.) is the important tuber crop cultivated worldwide. Multimillion people use potato as staple food in various developing countries. Potato plant belongs to the family Solanaceae. Its tubers develop as an underground stem that is edible and rich in nutrition. Its productivity could be increased through employing advanced production technologies under climate uncertainty.

Keywords

Solanum tuberosum Production practices Advanced technology 

References

  1. Ahmed S, Zhou X, Pang Y, Xu Y, Tong C, Bao J (2018) Genetic diversity of potato genotypes estimated by starch physicochemical properties and microsatellite markers. Food Chem.  https://doi.org/10.1016/j.foodchem.2018.03.029CrossRefGoogle Scholar
  2. Alyokhin A, Chen YH, Udalov M, Benkovskaya G, Lindström L (2013) Evolutionary considerations in potato pest management. In: Alyokhin A, Vincent C, Giordanengo P (eds) Insect pests of potato: biology and management. Academic, Waltham, pp 543–571Google Scholar
  3. Alyokhin A, Baker M, Mota-Sanchez D, Dively G, Grafius E (2008) Colorado potato beetle resistance to insecticides. Am J Potato Res 85:395–413Google Scholar
  4. Bradshaw JE, Ramsay G (2009) Potato origin and production. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology. Academic, Burlington, pp 1–26Google Scholar
  5. Brown CR (2005) Antioxidants in potato. Am J Potato Res 82:163–172Google Scholar
  6. Bukasov SM (1978) Systematics of the potato. Trudy po Prikladnoj Botanike Genetikei Selekcii 62:3–35Google Scholar
  7. Burgos G, Salas E, Amoros W, Auqui M, Munoa L, Kimura M, Bonbierale M (2009) Total and individual carotenoid profiles in Solanum phureja of cultivated potatoes: I. Concentrations and relationships as determined by spectrophotometry and HPLC. J Food Compost Anal 22:503–508Google Scholar
  8. Burton WG (1989) The potato. Wiley, New YorkGoogle Scholar
  9. Bushey DF, Bannon GA, Delaney BF, Graser G, Hefford M, Jiang X, Lee TC, Madduri KM, Calabrese EJ (2009) Getting the dose-response wrong: why hormesis became marginalized and the threshold model accepted. Arch Toxicol 83:227–247Google Scholar
  10. Camadro EL, Erazzú LE, Maune JF, Bedogni MC (2012) A genetic approach to the species problem in wild potato. Plant Biol 14:543–554Google Scholar
  11. Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297PubMedGoogle Scholar
  12. Contreras A, Castro I (2008) Catálogo de Variedades de Papas Nativas de Chile. Universidad Austral de Chile, ValdiviaGoogle Scholar
  13. Correll DS (1962) The potato and its wild relatives. Contributions from the Texas Research Foundation. Bot Stud 4:1–606Google Scholar
  14. Craigon J, Fangmeier A, Jones M, Donelly A, Bindi M, De TL, Persson K, Ojanpera K (2002) Growth and marketable-yield responses of potato to increasing CO2 and ozone. Eur J Agron 17:273–290Google Scholar
  15. Czajkowski R, Perombelon M, Jafra S, Lojkowska E, Potrykus M, Van Der Wolf J, Sledz W (2015) Detection, identification and differentiation of Pectobacterium and Dickeya species causing potato blackleg and tuber soft rot: a review. Ann Appl Biol 166(1):18–38Google Scholar
  16. de Haan S, Rodriguez F (2016) Potato origin and production. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Elsevier/Academic, Boston, pp 1–31Google Scholar
  17. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial minipathway. PLoS One 2:e350PubMedPubMedCentralGoogle Scholar
  18. Duan N, Bai Y, Sun H, Wang N, Ma Y, Li M, Wang X, Jiao C, Legall N, Mao L, Wan S, Wang K, He T, Feng S, Zhang Z, Mao Z, Shen X, Chen X, Jiang Y, Wu S, Yin C, Ge S, Yang L, Jiang S, Xu H, Liu J, Wang D, Qu C, Wang Y, Zuo W, Xiang L, Liu C, Zhang D, Gao Y, Xu Y, Xu K, Chao T, Fazio G, Shu H, Zhong GY, Cheng L, Fei Z, Chen X (2017) Genome re-sequencing reveals the history of apple and supports a two stage model for fruit enlargement. Nat Commun 8:249PubMedPubMedCentralGoogle Scholar
  19. Duarte-Delgado D, Narváez-Cuenca CE, Restrepo-Sánchez LP, Kushalappa A, Mosquera-Vásquez T (2015) Development and validation of a liquid chromatographic method to quantify sucrose, glucose, and fructose in tubers of Solanum tuberosum group Phureja. J Chromatogr B 975:18–23Google Scholar
  20. Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, Taylor MA (2005) Metabolic engineering of high carotenoid potato tubers containing enhanced levels of b-carotene and lutein. J Exp Bot 56:81–89Google Scholar
  21. FAO (2013) Global initiative on food losses and waste reduction. http://www.fao.org/docrep/018/i3300e/i3300e00.htm
  22. FAO (2009) Sustainable potato production guidelines for developing countries. FAO, RomeGoogle Scholar
  23. Food and Agriculture Organization of the United Nations (FAO) (2010) The second report on the state of the World’s plant genetic resources for food and agriculture. FAO, RomeGoogle Scholar
  24. Food and Agriculture Organization of the United Nations (FAO) (2008) International year of the potato: the global potato economy. FAO, RomeGoogle Scholar
  25. Food and Agriculture Organization of the United Nations (FAO) (2013) FAOSTAT Database. FAO. Available at: http://faostat3.fao.org. Accessed in 2018
  26. Food and Agriculture Organization of the United Nations (FAO) (2016) The global potato economy. FAO, RomeGoogle Scholar
  27. Gauthier NL, Hofmaster RN, Semel M (1981) History of Colorado potato beetle control. In: Lashomb JH, Casagrande R (eds) Advances in potato Pest management. Hutchinson Ross Publishing Co, Stroudsburg, pp 13–33Google Scholar
  28. González M, Galván GA, Siri MI, Borges A, Vilaró F (2013) Resistencia a la marchitez bacteriana de la papa en Solanum commersonii. Agrociencia (Uruguay) 17:45–54Google Scholar
  29. Gould WA (1999) Introduction and history. In: Gould WA (ed) Potato production, processing and technology. CTI Publications, Inc, Timonium, pp 1–11Google Scholar
  30. Graves C (2001) The potato treasure of the Andes: from agriculture to culture. International Potato Center, LimaGoogle Scholar
  31. Vleeshouwers VG, Raffaele S, Vossen JH, Champouret N, Oliva R, Segretin ME, Rietman H, Cano LM, Lokossou A, Kessel G, Pel MA, Kamoun S (2011) Understanding and exploiting late blight resistance in the age of effectors. Annu Rev Phytopathol 49:507–531PubMedPubMedCentralGoogle Scholar
  32. Habig JW, Rowland A, Pence MG, Zhong CX (2018) Food safety evaluation for R-proteins introduced by biotechnology: a case study of VNT1 in late blight protected potatoes. Regul Toxicol Pharmacol.  https://doi.org/10.1016/j.yrtph.2018.03.008CrossRefGoogle Scholar
  33. Hamilton E (1934) American treasure and the price revolution in Spain. Harvard University Press, Cambridge, MA, pp 1501–1650Google Scholar
  34. Hanneman RE (1994) Assignment of endosperm balance numbers to the tuber-bearing Solanums and their close non-tuber-bearing relatives. Euphytica 74:19–25Google Scholar
  35. Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517Google Scholar
  36. Harris GF, Niha PP (1999) Nga Riwai Maori: Maori potatoes. The Open Polytechnic of New Zealand, Lower Hutt, pp 2–99Google Scholar
  37. Hawkes JG (1956) Taxonomic studies on the tuber-bearing Solanums. 1. Solanum tuberosum and the tetraploid species complex. Proc Linnean Soc 166:97–144Google Scholar
  38. Hawkes JG (1963) A revision of the tuber-bearing Solanums. II. Scottish Plant Breeding Station Record 1963, pp 76–181Google Scholar
  39. Hawkes JG (1990) The potato: evolution, biodiversity & genetic resources. Belhaven Press, LondonGoogle Scholar
  40. Hawkes JG (1999) The evidence of the extent of N.I. Vavilov’s new world Andean centres of cultivated plant origins. Genet Resour Crop Evol 46:163–168Google Scholar
  41. Hawkes JG, Francisco-Ortega J (1992) The potato in Spain during the late 16th century. Econ Bot 46:86–97Google Scholar
  42. Hawkes JG, Francisco-Ortega J (1993) The early history of the potato in Europe. Euphytica 70:1–7Google Scholar
  43. Hazzouri KM, Flowers JM, Visser HJ, Khierallah HS, Rosas U, Pham GM, Meyer RS, Johansen CK, Fresquez ZA, Masmoudi K (2015) Whole genome re sequencing of date palms yields insights into diversification of a fruit tree crop. Nat Commun 6:8824PubMedPubMedCentralGoogle Scholar
  44. Hijmans RJ, Spooner DM, Salas AR, Guarino L, De la Cruz J (2002) Atlas of wild potatoes. International Plant Genetic Resources Institute, RomeGoogle Scholar
  45. IPCC (2001) Climate Change 2001: The scientific basis. Contributions of IPCC Working Groups to the IPCC Third Assessment Report. Cambridge University Press, New York, p 20Google Scholar
  46. Jacques RL (1988) The Potato beetles: the genus Leptinotarsa in North America (Coleoptera:Chrysomelidae). E. J. Brill, New YorkGoogle Scholar
  47. Johnston SA, den Nijs TPM, Peloquin SJ, Hanneman RE (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9Google Scholar
  48. Kong XL, Zhu P, Sui ZQ, Bao JS (2015) Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinization temperature combinations. Food Chem 172:433–440Google Scholar
  49. Kong X, Kasapis S, Zhu P, Sui Z, Bao J, Corke H (2016) Physicochemical and structural characteristics of starches from Chinese hull-less barley cultivars. Int J Food Sci Technol 51:509–518Google Scholar
  50. Kushalappa AC, Zulfiquar M (2001) Effect of wet incubation time and temperature on infection, and of storage time and temperature on soft rot lesion expansion in potatoes inoculated with Erwinia carotovora ssp. carotovora. Potato Res 44:233–242Google Scholar
  51. Li Y, Colleoni C, Zhang J, Liang Q, Hu Y, Ruess H, Simon R, Liu Y, Liu H, Yu G, Schmitt E, Ponitzki C, Liu G, Huang H, Zhan F, Chen L, Huang Y, Spooner D, Huang B (2018) Genomic analyses yield markers for identifying Agronomically important genes in potato. Mol Plant.  https://doi.org/10.1016/j.molp.2018.01.009CrossRefGoogle Scholar
  52. Lyew D, Gariepy Y, Raghavan GS, Kushalappa A (2001) Changes in volatile production during an infection of potatoes by Erwinia carotovora. Food Res Int 34:807–813Google Scholar
  53. Madllen (2012) Potato plant and tubers isolated on white– stock image. https://depositphotos.com/13815421/stock-photo-potato-plant-and-tubers-isolated.html
  54. Malcolmson JF, Black W (1966) New R genes in Solanum demissumLindl. and their complementary races of Phytophthora infestans (Mont.) de Bary. Euphytica 15:199–203Google Scholar
  55. Mathers TC, Yazhou C, Gemy K, Fabrice L, Mugford ST, Baa-Puyoulet P, Bretaudeau A, Clavijo B, Colella S, Collin O, Dalmay T, Derrien T, Feng H, Gabaldón T, Jordan A, Julca I, Kettles GJ, Kowitwanich K, Lavenier D, Lenzi P, Lopez-Gomollon S, Loska D, Mapleson D, Maumus F, Moxon S, Price DRG, Sugio A, van Munster M, Uzest M, Waite D, Jander G, Tagu D, Wilson ACC, van Oosterhout C, Swarbreck D, Hogenhout SA (2017) Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species. Genome Biol 18:27.  https://doi.org/10.1186/s13059-016-1145-3. Published online 2017 Feb 13. Correction in: Genome Biol. 2017; 18:63CrossRefPubMedPubMedCentralGoogle Scholar
  56. McKee IF, Bullimore JF, Long SP (1997) Will elevated CO2 concentrations protect the yield of wheat from O3 damage. Plant Cell Environ 20:77–84Google Scholar
  57. McKee IF, Mulholland BJ, Craigon J, Black CR, Long SP (2000) Elevated concentrations of atmospheric CO2 protect against and compensate for O3 damage to photosynthetic tissues of field-grown wheat. New Phytol 146:427–435Google Scholar
  58. Mulchi CL, Sammons DJ, Baenziger PS (1986) Yield and grain quality responses of soft red winter wheat exposed to ozone during anthesis. Agron J 75:593–600Google Scholar
  59. Mulholland BJ, Craigon J, Black CR, Colls JJ, Atherton J, Landon G (1997) Impact of elevated atmospheric CO2 and O3 on gas exchange and chlorophyll content in spring wheat (Triticum aestivum L.). J Exp Bot 48:1853–1863Google Scholar
  60. Narancio R, Zorrilla P, Gonzalez M, Vilaró F, Pritsch C, Dalla Rizza M (2013) Insights on gene expression response of a characterized resistant genotype of Solanum commersonii against Ralstonia solanacearum. Eur J Plant Pathol 136:823–835Google Scholar
  61. Nassar AMK, Ibrahim AAA (2016) 2,4-Dichlorophenoxy acetic acid, abscisic acid, and hydrogen peroxide induced resistance-related components against potato early blight (Alternaria solani, Sorauer). Ann Agric Sci 61:15–23.  https://doi.org/10.1016/j.aoas.2016.04.005CrossRefGoogle Scholar
  62. Noda T, Tsuda S, Mori M, Takigawa S, Matsuura-Endo C, Hashimoto N, Yamauchi H (2004) Properties of starches from potato varieties grown in Hokkaido. J Appl Glycosci 51:241–246Google Scholar
  63. Nunn N, Qian N (2011) Columbus’s contribution to world population and urbanization: a natural experiment examining the introduction of potatoes. Q J Econ 126:593–650Google Scholar
  64. Ojanperä K, Pätsikkä E, Yläranta T (1998) Effects of low ozone exposure of spring wheat in open-top chambers on net CO2-uptake, Rubisco, leaf senescence and grain filling. New Phytol 138:451–460Google Scholar
  65. Osaki M, Matsumoto M, Shinano T, Tadano T (1996) A root-shoot interaction hypothesis for high productivity of root crops. Soil Sci Plant Nutr 42:289–301Google Scholar
  66. Paget M, Amoros W, Salas E, Eyzaguirre R, Alspach P, Apiolaza L, Noble A, Bonierbale M (2014) Genetic evaluation of micronutrient traits diploid potato from a base population of Andean landrace cultivars. Crop Sci 54:1–11Google Scholar
  67. Peña C, Restrepo-Sánchez LP, Kushalappa A, Rodríguez-Molano LE, Mosquera T, Narváez-Cuenca CE (2015) Nutritional contents of advanced breeding clones of Solanum tuberosum group Phureja. LWT—Food Sci Technol 62(1).  https://doi.org/10.1016/j.lwt.2015.01.038CrossRefGoogle Scholar
  68. Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch/Staerke 62:389–420.  https://doi.org/10.1002/star.201000013CrossRefGoogle Scholar
  69. Potato Genome Sequencing Consortium, Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di GA BDM, DMA M, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mej¡a N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, del Rosario Herrera M, Giuliano G, Pietrella M, Perrotta G, Facella P, OΓÇÖBrien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa AN, Geoffroy M, Lundback S, DellaPenna D, Robin BC, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, JME J, Nielsen KL, Snderkr M, Iovene M, Torres GA, Jiang J, Veilleux RE, CWB B, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, te Lintel Hekkert B, Goverse A, van Ham RCHJ, Visser RGF (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195Google Scholar
  70. Przetaczek-Roznowska I (2017) Physicochemical properties of starches isolated from pumpkin compared with potato and corn starches. Int J Biol Macromol 101:536–542PubMedPubMedCentralGoogle Scholar
  71. Rutolo MF, Clarkson JP, Covington JA (2018) The use of an electronic nose to detect early signs of soft-rot infection in potatoes. Biosyst Eng 167:137–143Google Scholar
  72. Sabzi SY, Abbaspour-Gilandeh G, García-Mateos (2018) A fast and accurate expert system for weed identification in potato crops using metaheuristic algorithms. Comput Ind 98:80–89Google Scholar
  73. Salaman RN (1937) The potato in its early home and its early introduction into Europe. J R Hortic Soc 62:61–266Google Scholar
  74. Salaman RN (1946) The early European potato: its character and place of origin. J Linn Soc Bot 53:1–27Google Scholar
  75. Salaman RN (1949) The history and social influence of the potato. Cambridge University Press, CambridgeGoogle Scholar
  76. Salengke S, Sastry SK (2007) Effects of ohmic pretreatment on oil uptake of potato slices during frying and subsequent cooling. J Food Eng 30:1–12Google Scholar
  77. Salunkhe DK, Kadam SS (1991) Introduction. In: Salunkhe DK, Kadam SS, Jadhav SJ (eds) Potato: production, processing, and products. CRC Press, Boca Raton/Ann Arbor/Boston, pp 1–9Google Scholar
  78. Schoville SD, Chen YH, Andersson MN, Benoit JB, Bhandari A, Bowsher JH, Brevik K, Cappelle K, Chen MJM, Childers AK, Childers C, Christiaens O, Clements J, Didion EM, Elpidina EN, Engsontia P, Friedrich M, García-Robles I, Gibbs RA, Goswami C, Grapputo A, Gruden K, Grynberg M, Henrissat B, Jennings EC, Jones JW, Kalsi M, Khan SA, Kumar A, Li F, Lombard V, Ma X, Martynov A, Miller NJ, Mitchell RF, Munoz-Torres M, Muszewska A, Oppert B, Palli SR, Panfilio KA, Pauchet Y, Perkin LC, Petek M, Poelchau MF, Record E, Rinehart JP, Robertson HM, Rosendale AJ, Ruiz-Arroyo VM, Smagghe G, Szendrei Z, Gregg Thomas WC, Torson AS, Jentzsch IMV, Weirauch MT, Yates AD, Yocum GD, Yoon JS, Richards S (2018) A model species for agricultural pest genomics: the genome of the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Sci Rep 8(1):1931.  https://doi.org/10.1038/s41598-018-20154-1CrossRefPubMedPubMedCentralGoogle Scholar
  79. Simmonds NW (1964) Studies on the tetraploid potatoes. II. Factors in the evolution of the tuberosum group. J Linn Soc Bot 59:43–56Google Scholar
  80. Simmonds NW (1966) Studies on the tetraploid potatoes. III. Progress in the experimental re-creation of the tuberosum group. J Linn Soc Bot 59:279–288Google Scholar
  81. Singh J, Kaur L (2016) Chemistry, processing, and nutritional attributes of potatoes—an introduction. In: Singh J, Kaur L (eds) Advances in potato chemistry and technology, 2nd edn. Academic, BostonGoogle Scholar
  82. Singh N, Isono N, Srichuwong S, Noda T, Nishinari K (2008) Structural, thermal and viscoelastic properties of potato starches. Food Hydrocoll 22:979–988Google Scholar
  83. Spooner DM (2009) DNA barcoding will frequently fail in complicated groups: an example in wild potatoes. Am J Bot 96:1177–1189Google Scholar
  84. Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383Google Scholar
  85. Spooner DM, Jansky SH, Clausen A, Herrera MR, Ghislain M (2012) The enigma of Solanum maglia in the origin of the Chilean cultivated potato, Solanum tuberosum Chilotanum group. Econ Bot 66:12–21Google Scholar
  86. Spooner DM, Van der Berg RG, Rodríguez A, Bamberg J, Hijmans RJ, Lara Cabrera SI (2004) Wild potatoes (Solanum section Petota; Solanaceae) of North and Central America. Syst Bot Monogr 68:1–209.  https://doi.org/10.2307/25027916
  87. Stefanczyk E, Sobkowiak S, Brylinska M, Sliwka J (2017) Expression of the potato late blight resistance gene Rpi-phu1 and Phytophthora infestans effectors in the compatible and incompatible interactions in potato. Phytopathology 107:740–748Google Scholar
  88. Sun DW (2005) In: Sun DW (ed) Emerging technologies for food processing. Elsevier, LondonGoogle Scholar
  89. Talburt WF (1975) History of potato processing. In: Talburt WF, Smith O (eds) Potato Processing, 3rd edn. The AVI Publishing Company INC Westport, Connecticut, pp 1–11Google Scholar
  90. Ugent D, Dillehay T, Ramirez C (1987) Potato remains from a late pleistocene settlement in South central Chile. Econ Bot 41:17–27Google Scholar
  91. Urrutia-Benet G, Balogh T, Schneider J, Knorr D (2007) Metastable phases during high-pressure-low temperature processing of potatoes and their impact on quality-related parameters. J Food Eng 78:375–389Google Scholar
  92. van der Berg R, Groendijk-Wilders N (2014) Taxonomy. In: Navarre R, Pavek M (eds) The potato: botany, production and uses. CABI Publishing, Surrey, pp 12–28Google Scholar
  93. Vandermeiren K, Black C, Lawson T, Casanova A, Ojanpera¨ K (2002) Photosynthetic and stomatal responses of potatoes grown under elevated CO2 and/or O3 concentrations-results from the European CHIP-programme. Eur J Agron 17:337–352Google Scholar
  94. Wale S, Platt B, Cattlin N (2008) Diseases, Pests and Disorders of Potatoes. Manson Publishing Ltd, London. (Chapter 2)Google Scholar
  95. Wang Q, Zhang W (2004) China’s potato industry and potential impacts on the global market. Am J Potato Res 81:101–109Google Scholar
  96. Welti-Chanes J, Lopez-Malo A, Palou E, Bermudez D, Guerrero-Beltran JA, Barbosa-Canovas GV (2005) Fundamentals and applications of high pressure processing to foods. In: Barbosa-Canovas GV, Tapia MS, Cano PM (eds) Novel food processing technologies. CRC Press LLC, Boca Raton, pp 157–181Google Scholar
  97. Whalon ME, Mota-Sanchez D, Hollingworth RM, Duynslager L (2011) Arthropod pesticide resistance database. www.pesticideresistance.org. Accessed on 25 Aug 2011
  98. Xu X, Liu X, Ge S, Jensen JD, Hu F, Li X, Dong Y, Gutenkunst RN, Fang L, Huang L, Li J, He W, Zhang G, Zheng X, Zhang F, Li Y, Yu C, Kristiansen K, Zhang X, Wang J, Wright M, McCouch S, Nielsen R, Wang J, Wang W (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30:105–111Google Scholar
  99. Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee SH, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related 823 to domestication and improvement in soybean. Nat Biotechnol 33:408–414Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tanveer Ahmad
    • 1
  • Rana Muhammad Sabir Tariq
    • 2
  • Qumer Iqbal
    • 3
    • 4
  • Sajjad Hussain
    • 5
  • Aamir Nawaz
    • 6
  • Shakeel Ahmad
    • 7
    Email author
  1. 1.Department of HorticultureGhazi UniversityDera Ghazi KhanPakistan
  2. 2.Department of Plant PathologyUniversity of AgricultureFaisalabadPakistan
  3. 3.Fiblast, LLCTuskegeeUSA
  4. 4.Institute of Horticultural Sciences, University of AgricultureFaisalabadPakistan
  5. 5.College of Agriculture, Bahauddin Zakariya UniversityMultanPakistan
  6. 6.Department of HorticultureBahauddin Zakariya UniversityMultanPakistan
  7. 7.Department of AgronomyBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations