Advanced Image Techniques in Chronic Kidney Disease



Chronic kidney disease (CKD) is increasingly recognized as a global public health problem. How to accurate assessment this irreversible disease process is a key point for the secondary treatment. Over the past decade, applications of novel image methods provide noninvasive, reliable, quantitative data of renal perfusion, glomerular filtration, interstitial diffusion, and the degree of renal fibrosis. Moreover, these techniques also offer pathophysiologic data such as energy dys-metabolism in the initial disease stage. This chapter reviews advanced applications of the image techniques including ultrasound-based techniques, multi-detector computed tomography, magnetic resonance imaging, and nuclear-based techniques in CKD. The knowledge of the applications, advantages, and disadvantages of these techniques could open a framework for nephrologists to make informed decisions in clinical practice. However, there remains a gap between theoretical studies and clinical applications. Standard protocol and generic analysis model are needed for large-scale clinical application in the future.


  1. 1.
    Levey AS, Atkins R, Coresh J, Cohen EP, Collins AJ, Eckardt KU, et al. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney Int. 2007;72(3):247–59.PubMedCrossRefGoogle Scholar
  2. 2.
    Tampe D, Zeisberg M. Potential approaches to reverse or repair renal fibrosis. Nat Rev Nephrol. 2014;10(4):226–37.CrossRefGoogle Scholar
  3. 3.
    Tondel C, Vikse BE, Bostad L, Svarstad E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988-2010. Clin J Am Soc Nephrol. 2012;7(10):1591–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Meola M, Samoni S, Petrucci I. Imaging in chronic kidney disease. Contrib Nephrol. 2016;188:69–80.PubMedCrossRefGoogle Scholar
  5. 5.
    Vegar Zubovic S, Kristic S, Sefic Pasic I. Relationship between ultrasonographically determined kidney volume and progression of chronic kidney disease. Med Glas (Zenica). 2016;13(2):90–4.Google Scholar
  6. 6.
    Boddi M, Natucci F, Ciani E. The internist and the renal resistive index: truths and doubts. Intern Emerg Med. 2015;10(8):893–905.PubMedCrossRefGoogle Scholar
  7. 7.
    Spatola L, Andrulli S. Doppler ultrasound in kidney diseases: a key parameter in clinical long-term follow-up. J Ultrasound. 2016;19(4):243–50.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Boddi M. Renal ultrasound (and Doppler Sonography) in hypertension: an update. Adv Exp Med Biol. 2017;956:191–208.PubMedCrossRefGoogle Scholar
  9. 9.
    Lennartz CS, Pickering JW, Seiler-Mussler S, Bauer L, Untersteller K, Emrich IE, et al. External validation of the kidney failure risk equation and re-calibration with addition of ultrasound parameters. Clin J Am Soc Nephrol. 2016;11(4):609–15.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Chang EH. An introduction to contrast-enhanced ultrasound for nephrologists. Nephron. 2018;138(3):176–85.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    McArthur C, Baxter GM. Current and potential renal applications of contrast-enhanced ultrasound. Clin Radiol. 2012;67(9):909–22.CrossRefPubMedGoogle Scholar
  12. 12.
    Kalantarinia K, Belcik JT, Patrie JT, Wei K. Real-time measurement of renal blood flow in healthy subjects using contrast-enhanced ultrasound. Am J Physiol Renal Physiol. 2009;297(4):F1129–34.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Schneider AG, Hofmann L, Wuerzner G, Glatz N, Maillard M, Meuwly JY, et al. Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant. 2012;27(2):674–81.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Schneider AG, Goodwin MD, Schelleman A, Bailey M, Johnson L, Bellomo R. Contrast-enhanced ultrasonography to evaluate changes in renal cortical microcirculation induced by noradrenaline: a pilot study. Crit Care. 2014;18(6):653.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wang L, Cheng JF, Sun LP, Song YX, Guo LH, Xu JM, et al. Use of contrast-enhanced ultrasound to study relationship between serum uric acid and renal microvascular perfusion in diabetic kidney disease. Biomed Res Int. 2015;2015:732317.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Grenier N, Gennisson JL, Cornelis F, Le Bras Y, Couzi L. Renal ultrasound elastography. Diagn Interv Imaging. 2013;94(5):545–50.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Derieppe M, Delmas Y, Gennisson JL, Deminiere C, Placier S, Tanter M, et al. Detection of intrarenal microstructural changes with supersonic shear wave elastography in rats. Eur Radiol. 2012;22(1):243–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Grenier N, Poulain S, Lepreux S, Gennisson JL, Dallaudiere B, Lebras Y, et al. Quantitative elastography of renal transplants using supersonic shear imaging: a pilot study. Eur Radiol. 2012;22(10):2138–46.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ehling J, Babickova J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, et al. Quantitative micro-computed tomography imaging of vascular dysfunction in progressive kidney diseases. J Am Soc Nephrol. 2016;27(2):520–32.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Tsushima Y, Blomley MJ, Okabe K, Tsuchiya K, Aoki J, Endo K. Determination of glomerular filtration rate per unit renal volume using computerized tomography: correlation with conventional measures of total and divided renal function. J Urol. 2001;165(2):382–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Grenier N, Quaia E, Prasad PV, Juillard L. Radiology imaging of renal structure and function by computed tomography, magnetic resonance imaging, and ultrasound. Semin Nucl Med. 2011;41(1):45–60.PubMedCrossRefGoogle Scholar
  22. 22.
    Morrell GR, Zhang JL, Lee VS. Magnetic resonance imaging of the fibrotic kidney. J Am Soc Nephrol. 2017;28(9):2564–70.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Sourbron SP, Michaely HJ, Reiser MF, Schoenberg SO. MRI-measurement of perfusion and glomerular filtration in the human kidney with a separable compartment model. Invest Radiol. 2008;43(1):40–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Perazella MA. Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link? Clin J Am Soc Nephrol. 2007;2(2):200–2.PubMedCrossRefGoogle Scholar
  25. 25.
    Kallen AJ, Jhung MA, Cheng S, Hess T, Turabelidze G, Abramova L, et al. Gadolinium-containing magnetic resonance imaging contrast and nephrogenic systemic fibrosis: a case-control study. Am J Kidney Dis. 2008;51(6):966–75.PubMedCrossRefGoogle Scholar
  26. 26.
    Dambreville S, Chapman AB, Torres VE, King BF, Wallin AK, Frakes DH, et al. Renal arterial blood flow measurement by breath-held MRI: accuracy in phantom scans and reproducibility in healthy subjects. Magn Reson Med. 2010;63(4):940–50.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Schoenberg SO, Aumann S, Just A, Bock M, Knopp MV, Johansson LO, et al. Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2): results in animals and humans with renal artery stenosis. Magn Reson Med. 2003;49(2):288–98.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Ritt M, Janka R, Schneider MP, Martirosian P, Hornegger J, Bautz W, et al. Measurement of kidney perfusion by magnetic resonance imaging: comparison of MRI with arterial spin labeling to para-aminohippuric acid plasma clearance in male subjects with metabolic syndrome. Nephrol Dial Transplant. 2010;25(4):1126–33.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Wang WJ, Pui MH, Guo Y, Wang LQ, Wang HJ, Liu M. 3T magnetic resonance diffusion tensor imaging in chronic kidney disease. Abdom Imaging. 2014;39(4):770–5.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Feng Q, Ma Z, Wu J, Fang W. DTI for the assessment of disease stage in patients with glomerulonephritis—correlation with renal histology. Eur Radiol. 2015;25(1):92–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Inoue T, Kozawa E, Okada H, Inukai K, Watanabe S, Kikuta T, et al. Noninvasive evaluation of kidney hypoxia and fibrosis using magnetic resonance imaging. J Am Soc Nephrol. 2011;22(8):1429–34.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology. 2005;235(3):911–7.PubMedCrossRefGoogle Scholar
  33. 33.
    Yalcin-Safak K, Ayyildiz M, Unel SY, Umarusman-Tanju N, Akca A, Baysal T. The relationship of ADC values of renal parenchyma with CKD stage and serum creatinine levels. Eur J Radiol Open. 2016;3:8–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Toya R, Naganawa S, Kawai H, Ikeda M. Correlation between estimated glomerular filtration rate (eGFR) and apparent diffusion coefficient (ADC) values of the kidneys. Magn Reson Med. 2010;9(2):59–64.CrossRefGoogle Scholar
  35. 35.
    Lu L, Sedor JR, Gulani V, Schelling JR, O'Brien A, Flask CA, et al. Use of diffusion tensor MRI to identify early changes in diabetic nephropathy. Am J Nephrol. 2011;34(5):476–82.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Gaudiano C, Clementi V, Busato F, Corcioni B, Orrei MG, Ferramosca E, et al. Diffusion tensor imaging and tractography of the kidneys: assessment of chronic parenchymal diseases. Eur Radiol. 2013;23(6):1678–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Gloviczki ML, Glockner JF, Lerman LO, McKusick MA, Misra S, Grande JP, et al. Preserved oxygenation despite reduced blood flow in poststenotic kidneys in human atherosclerotic renal artery stenosis. Hypertension. 2010;55(4):961–6.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ebrahimi B, Li Z, Eirin A, Zhu XY, Textor SC, Lerman LO. Addition of endothelial progenitor cells to renal revascularization restores medullary tubular oxygen consumption in swine renal artery stenosis. Am J Physiol Renal Physiol. 2012;302(11):F1478–85.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yin WJ, Liu F, Li XM, Yang L, Zhao S, Huang ZX, et al. Noninvasive evaluation of renal oxygenation in diabetic nephropathy by BOLD-MRI. Eur J Radiol. 2012;81(7):1426–31.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Warner L, Glockner JF, Woollard J, Textor SC, Romero JC, Lerman LO. Determinations of renal cortical and medullary oxygenation using blood oxygen level-dependent magnetic resonance imaging and selective diuretics. Invest Radiol. 2011;46(1):41–7.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Lee CU, Glockner JF, Glaser KJ, Yin M, Chen J, Kawashima A, et al. MR elastography in renal transplant patients and correlation with renal allograft biopsy: a feasibility study. Acad Radiol. 2012;19(7):834–41.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Warner L, Yin M, Glaser KJ, Woollard JA, Carrascal CA, Korsmo MJ, et al. Noninvasive in vivo assessment of renal tissue elasticity during graded renal ischemia using MR elastography. Invest Radiol. 2011;46(8):509–14.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Ogawa S, Abe H, Katsuta T, Fukuda K, Ogata T, Miki K, et al. Early and noninvasive evaluation using superficial temporal artery duplex ultrasonography after indirect bypass for adult ischemic moyamoya disease. Acta Neurochir. 2017;159(3):577–82.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Vyhnanovska P, Dezortova M, Herynek V, Taborsky P, Viklicky O, Hajek M. In vivo 31P MR spectroscopy of human kidney grafts using the 2D-chemical shift imaging method. Transplant Proc. 2011;43(5):1570–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Haufe SE, Riedmuller K, Haberkorn U. Nuclear medicine procedures for the diagnosis of acute and chronic renal failure. Nephron Clin Pract. 2006;103(2):c77–84.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Itoh K. 99mTc-MAG3: review of pharmacokinetics, clinical application to renal diseases and quantification of renal function. Ann Nucl Med. 2001;15(3):179–90.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Goethals P, Volkaert A, Vandewielle C, Dierckx R, Lameire N. 55Co-EDTA for renal imaging using positron emission tomography (PET): a feasibility study. Nucl Med Biol. 2000;27(1):77–81.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Rosenberger C, Griethe W, Gruber G, Wiesener M, Frei U, Bachmann S, et al. Cellular responses to hypoxia after renal segmental infarction. Kidney Int. 2003;64(3):874–86.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Beer AJ, Haubner R, Goebel M, Luderschmidt S, Spilker ME, Wester HJ, et al. Biodistribution and pharmacokinetics of the alphavbeta3-selective tracer 18F-galacto-RGD in cancer patients. J Nucl Med. 2005;46(8):1333–41.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  • Zhuo Xu
    • 1
  1. 1.Centre for Kidney DiseaseSecond Affiliated Hospital, Nanjing Medical UniversityNanjingChina

Personalised recommendations