Food, Feeding Behaviour, Growth and Neuroendocrine Control of Moulting and Reproduction

  • E. V. RadhakrishnanEmail author
  • Joe K. Kizhakudan


This chapter encapsulates information on food, feeding behaviour, moulting, growth and neuroendocrine regulation of moulting and reproduction in lobsters. A lot of research has been carried out worldwide on growth and the processes controlling it in lobsters, mostly on homarid and palinurid lobsters. This chapter, through a review of documented research, describes the moult cycle in lobsters, which is similar to that of other crustaceans, and the process of growth that occurs with moulting. It also discusses differences in growth rates with age, sex and varying external factors, including food. The feeding behaviour in lobsters is also discussed. The relationship between growth, moulting and reproduction and the internal factors that regulate these processes are also dealt with. A detailed account of neuroendocrine hormones and mechanisms that play an important role in the lobster physiology is presented. An insight into the aspects presented here will help in developing rearing protocols for commercially important cultivable lobsters.


Moulting Growth Food Neuroendocrine hormones Physiology Reproduction 


  1. Abramowitz, A. A., Hisaw, F. L., & Papandrea, D. N. (1944). The occurrence of a diabetogenic factor in the eyestalks of crustaceans. The Biological Bulletin, 86, 1–5.CrossRefGoogle Scholar
  2. Adiyodi, K. G., & Adiyodi, R. G. (1970). Endocrine control of reproduction in decapod crustacea. Biological Reviews of the Cambridge Philosophical Society, 45(2), 121–164.PubMedCrossRefGoogle Scholar
  3. Aiken, D. E. (1973). Proecdysis, setal development and molt prediction in the American lobster (Homarus americanus). Journal of the Fisheries Research Board of Canada, 30, 1337–1344.CrossRefGoogle Scholar
  4. Aiken, D. E. (1980). Molting and growth. In J. C. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (Vol. 1, pp. 91–163). New York: Academic.CrossRefGoogle Scholar
  5. Aiken, D. E., & Waddy, S. L. (1992). The growth process in crayfish. Reviews in Aquatic Sciences, 6, 335–381.Google Scholar
  6. Al-Marzouqi, A., Al-Nahdi, A., Jayabalan, N., & Groeneveld, J. C. (2007). An assessment of the spiny lobster Panulirus homarus fishery in Oman – Another decline in the western Indian Ocean? Western Indian Ocean Journal of Marine Science, 6(2), 159–174.Google Scholar
  7. Andree, S. W. (1981). Locomotor activity patterns and food items of benthic postlarval spiny lobsters, Panulirus argus. MS thesis, Florida State University, Miami.Google Scholar
  8. Andrew, N. L., & MacDiarmid, A. B. (1991). Interrelation between sea urchins and spiny lobsters in northeastern New Zealand. Marine Ecology Progress Series, 70, 211–222.CrossRefGoogle Scholar
  9. Baisre, J. A., & Cruz, R. (1994). The Cuban spiny lobster fishery. In B. F. Phillips, J. S. Cobb, & J. Kittaka (Eds.), Spiny lobster management (pp. 119–132). London: Fishing News Books.Google Scholar
  10. Barkai, A., & Branch, G. M. (1988). Energy requirement for a dense population of rock lobsters Jasus lalandii: novel importance of unorthodox and orthodox food sources. Marine Ecology Progress Series, 50, 83–96.CrossRefGoogle Scholar
  11. Barkai, A., & McQuaid, C. (1988). Predator-prey role reversal in a marine benthic ecosystem. Science, 242, 62–64.PubMedCrossRefGoogle Scholar
  12. Belchier, M., Shelton, P. M. J., & Chapman, C. J. (1994). The identification and measurement of fluorescent age-pigment abundance in the brain of a crustacean (Nephrops norvegicus) by confocal microscopy. Comparative Biochemistry and Physiology, 1088(2), 157–164.Google Scholar
  13. Berry, P. F. (1971). The biology of the spiny lobster Panulirus homarus (Linnaeus) off the east coast of southern Africa. Investl Representative Oceanography Research Institute, 28, 75.Google Scholar
  14. Berry, P. F. (1977). A preliminary account of a study of biomass and energy flow in a shallow subtidal reef community on the east coast of South Africa, involving the rock lobster Panulirus homarus. Circular-CSIRO Division of Fisheries Ocenography (Australia), 7, 24.Google Scholar
  15. Berry, P. F., & Smale, M. J. (1980). An estimate of production and consumption rates in the spiny lobster Panulirus homarus on a shallow littoral reef off the Natal coast, South Africa. Marine Ecology Progress Series, 2(4), 337–343.CrossRefGoogle Scholar
  16. Bliss, D. E. (1951). Metabolic effect of sinus gland or eyestalk removal in the land crab, Gecarcinus lateralis. The Anatomical Record, 111, 502–503.Google Scholar
  17. Bliss, D. E. (1953). Neurosecretion and crab metabolism in the land crab, Gecarcinus lateralis (Freminville). I. Differences in the respiratory metabolism of sinus glandless and eyestalkless crabs. Biological Bulletin (Woods Hole, Mass), 104, 275–296.Google Scholar
  18. Bliss, D. E. (1956, November 20). Neurosecretion and the control of growth in a decapod crustacean. In K. G. Wingstrand (Ed.), Bertil Hanstrom, Zoological papers in Honour of his Sixty-fifth Birthday (pp. 56–75). Zoological Institute, Lund.Google Scholar
  19. Borst, D. W., Laufer, H., Landau, M., Chang, E. S., & Hertz, W. A. (1987). Methyl Farnesoate (MF) and its role in crustacean reproduction and development. Insect Biochemistry, 17, 1123–1127.CrossRefGoogle Scholar
  20. Borst, D. W., Tsukimura, B., Laufer, H., & Couch, E. F. (1994). Regional differences in methyl farnesoate production by the lobster mandibular organ. The Biological Bulletin, 186(1), 9–16.PubMedCrossRefGoogle Scholar
  21. Boudreau, S. A., & Worm, B. (2012). Ecological role of large benthic decapods in marine ecosystems: a review. Marine Ecology Progress Series, 469, 195–213.CrossRefGoogle Scholar
  22. Briones-Fourzan, P., Lara, V. C. F., de Lozano Alvarez, E., & Estrada-Olivo, J. (2003). Feeding ecology of the three juvenile phases of the spiny lobster Panulirus argus in a tropical reef lagoon. Marine Biology, 142, 855–865.CrossRefGoogle Scholar
  23. Bruce, M. J., & Chang, E. S. (1984). Demonstration of a molt inhibiting hormone from the sinus gland of the lobster, Homarus americanus. Comparative Biochemistry Physiology Part A, 79(3), 421–424.CrossRefGoogle Scholar
  24. Butenandt, A., & Karlson, P. (1954). ljber die Isolierung eines Metamorphosehormons der Insekten in kristellisierter Form. Zeitschrift für Naturforschung, 96, 389–391.CrossRefGoogle Scholar
  25. Byard, E. H., Shivers, R. R., & Aiken, D. E. (1975). The mandibular organ of the lobster, Homarus americanus. Cell and Tissue Research, 162, 13–22.PubMedCrossRefGoogle Scholar
  26. Carlisle, D. B. (1953). Preliminary note on the structure of the neurosecretory system of the eyestalk of Lysmata seticaudata Risso (Crustacea). C R Hebd Seances Academic Science, 236, 2541–2542.Google Scholar
  27. Carter, J. A., & Steele, D. H. (1982). Attraction to and selection of prey by immature lobsters (Homarus americanus). Canadian Journal of Zoology, 60, 326–336.CrossRefGoogle Scholar
  28. Castaneda-Fernandez, V., Butler, M. J., Hernandez-Vazquez, S., del Proo, S. G., & Serviere-Zaragoza, E. (2005). Determination of preferred habitats of early benthic juvenile California spiny lobster Panulirus interruptus on the Pacific coast of Baja California Sur, Mexico. New Zealand .Journal of Marine Freshwater Research, 56, 1–9.CrossRefGoogle Scholar
  29. Chang, E. S. (1984). Ecdysteroids in Crustacea: Role in reproduction, molting, and larval development. In W. Engels, W. H. Clark, A. Fischer, & D. F. Went (Eds.), Advances in invertebrate reproduction (Vol. 3, pp. 223–230). Amsterdam: Elsevier Science Publishers.Google Scholar
  30. Chang, E. S. (1985). Hormonal Control of Molting in Decapod Crustacea. American Zoologist, 25(1), 179–185.CrossRefGoogle Scholar
  31. Chang, E. S. (1989). Endocrine regulation of molting in decapod crustacean. Reviews in Aquatic Sciences, 1, 131–157.Google Scholar
  32. Chang, E. S. (2001). Crustacean hyperglycemic hormone and family old paradigms and new perspectives. American Zoologist, 41, 380–388.Google Scholar
  33. Chang, E. S., & Bruce, M. (1980). Ecdysone titers of juvenile lobsters following molt induction. The Journal of Experimental Zoology, 214, 157–160.CrossRefGoogle Scholar
  34. Chang, E. S., Sage, B. A., & O’Connor, J. D. (1976). The qualitative and quantitative determination of ecdysones in tissues of the crab Pachygrapsus crassipes following molt induction. General and Comparative Endocrinology, 30, 21–33.PubMedCrossRefPubMedCentralGoogle Scholar
  35. Chang, E. S., Bruce, M. J., & Newcomb, R. W. (1987). Purification and aminoacid composition of a peptide with molt-inhibiting activity from the lobster, Homarus americanus. General and Comparative Endocrinology, 65, 56–64.PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chang, E. S., Prestwich, G. D., & Bruce, M. J. (1990). Aminoacid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochemical and Biophysical Research Communications, 171, 818–826.PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chang, E. S., Bruce, M. J., & Tamone, S. L. (1993). Regulation of crustacean molting: A multi-hormonal system. American Zoologist, 33, 324–329.CrossRefGoogle Scholar
  38. Chang, E. S., Keller, R., & Chang, S. A. (1998). Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. General and Comparative Endocrinology, 111, 359–366.PubMedCrossRefPubMedCentralGoogle Scholar
  39. Chang, E. S., Chang, S. A., Beltz, B. S., & Kravitz, E. A. (1999). Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second roots. The Journal of Comparative Neurology, 414, 50–56.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Chang, E. S., Chang, S. A., & Mulder, E. P. (2001). Hormones in the lives of crustaceans: an overview. American Zoologist, 41, 380–388.Google Scholar
  41. Chang, Y.-J., Sun, C.-L., Chen, Y., & Yeh, S.-Z. (2012). Modelling the growth of crustacean species. Reviews in Fish Biology and Fisheries, 22(1), 157–187.CrossRefGoogle Scholar
  42. Charniaux-Cotton, H. (1957). Croissance regeneration et determinisme endocrinien des caracteres sexuels d’Orchestia gammarella (Pallas) Crustace Amphipode. Annales des Sciences Naturelles – Zoologie et Biologie Animale, 19, 411–560.Google Scholar
  43. Chen, J. H., Kabbouh, M., Fisher, M. J., & Rees, H. H. (1994). Induction of an inactivation pathway for ecdysteroids in larvae of the cotton leafworm, Spodoptera littoralis. The Biochemical Journal, 301, 89–95.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Cheng, J. H., & Chang, E. S. (1991). Ecdysteroid treatment delays ecdysis in the lobster, Homarus americanus. The Biological Bulletin, 181(1), 169–174.PubMedCrossRefGoogle Scholar
  45. Chittleborough, R. G. (1975). Environmental factors affecting growth and survival of juvenile western rock lobsters. Australian Journal of Marine & Freshwater Research, 26, 177–196.CrossRefGoogle Scholar
  46. Chung, J. S., Dirckson, H., & Webster, S. G. (1999). A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proceedings of the National Academy of Sciences of the United States of America, 96, 13103–13107.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Cobb, J. S., & Tamm, G. R. (1974). Social conditions increase intermolt period in juvenile lobsters Homarus americanus. Journal of the Fisheries Research Board of Canada, 32, 1941–1943.CrossRefGoogle Scholar
  48. Colinas-Sánchez, F., & Briones-Fourzán, P. (1990). Alimentación de las langostas Panulirus argus y P. guttatus (Latreille 1804) en el Caribe Mexicano. Anales del Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 17, 89–109.Google Scholar
  49. Cooper, R. A., & Uzmann, J. R. (1980). Ecology of juvenile and adult Homarus. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (Ecology and management) (Vol. 2, pp. 97–178). New York: Academic.CrossRefGoogle Scholar
  50. Couch, E. F., Daily, C. S., & Smith, W. B. (1976). Evidence for the Presence of Molt-Inhibiting Hormone in the sinus Gland of the Lobster Homarus americanus. Journal of the Fisheries Research Board of Canada, 33(7), 1623–1627.CrossRefGoogle Scholar
  51. Dall, W. (1974). Indices of nutritional state in the western rock lobster, Panulirus longipes (Milne Edwards). I. Blood and tissue constituents and water content. Journal of Experimental Marine Biology and Ecology, 16, 167–180.CrossRefGoogle Scholar
  52. Dall, W. (1975). Indices of nutritional state in the western rock lobster, Panulirus longipes, II. Gastric fluid constituents. Journal of Experimental Marine Biology and Ecology, 18, 1–18.CrossRefGoogle Scholar
  53. Dall, W. (1977). Review of the physiology of growth and moulting in rock lobsters. Circular, CSIRO Division of Fisheries & Oceanography. (Aust.), 7, 75–81.Google Scholar
  54. Dall, W., & Barclay, M. C. (1977). Induction of viable ecdysis in the western rock lobster by 20-hydroxyecdysone. General and Comparative Endocrinology, 31(3), 323–334.PubMedCrossRefGoogle Scholar
  55. Davis, G. E. (1977). Effects of recreational harvest on a spiny lobster, Panulirus argus, population. Bulletin of Marine Science, 27, 223–236.Google Scholar
  56. Davis, G. E. (1981). Effect of injuries on spiny lobster, Panulirus argus, and implications for fishery management. Fishery Bulletin, 78, 979–984.Google Scholar
  57. Dell, S., Sedlmieier, D., Bocking, D., & Dauphlin-Villemant, C. (1999). Ecdysteroid biosynthesis in crayfish Y-organs: Feedback regulation by circulating ecdysteroids. Archives of Insect Biochemistry and Physiology, 41(3), 148–155.PubMedCrossRefGoogle Scholar
  58. Díaz-Arredondo, M. A., & Guzmán-del-Próo, S. A. (1995). Feeding habits of the spiny lobster (Panulirus interruptus Randall, 1840) in Bahía Tortugas, Baja California Sur. Ciencias Marinas, 21, 439–462.CrossRefGoogle Scholar
  59. Dircksen, H., Webster, S. G., & Keller, R. (1988). Immunocytochemical demonstration of the neurosecretory systems containing putative moult-inhibiting hormone and hyperglycemic hormone in the eyestalk of brachyuran crustaceans. Cell and Tissue Research, 251(1), 3–12.CrossRefGoogle Scholar
  60. Drach, P. (1939). Mue et cycle d'intermue chez les Crustacés Décapodes. Annales de l'Institut Océano-graphique, Monaco, 18, 103–391.Google Scholar
  61. Drach, P. (1944). Étude préliminaire sur le cycle d,intermue et son conditionnement hormonal chez Leander serratus (Pennant). Bulletin biologique de la France et de la Belgique, Paris, 78, 40–62.Google Scholar
  62. Drach, P., & Tchernigovtzeff, C. (1967). Sur la method de determination des stades d’intermue et son application general aux Crustaces. Vie et Milieu (A), 18, 597–607.Google Scholar
  63. Durand, J. B. (1956). Neurosecretory cell types and their secretory activity in the crayfish. The Biological Bulletin, 14, 62–76.CrossRefGoogle Scholar
  64. Eastman-Reks, S., & Fingerman, M. (1984). Effects of neuroendocrine tissue and cyclic AMP on ovarian growth in vivo and in vitro in the fiddler crab, Uca pugilator. Comparative Biochemistry and Physiology Part A, 79, 679–668.CrossRefGoogle Scholar
  65. Ebert, T. A., & Ford, R. F. (1986). Population ecology and fishery potential of the spiny lobster Panulirus penicillatus at Enewetak Atoll, Marshall Islands. Bulletin of Marine Science, 38, 56–67.Google Scholar
  66. Echalier, G. (1955). Role de l'organe Y dans la d6terminisme de la mue de Carcinides (Carcinus) moenas L. (Crustaces D6capodes); experiences d'implantation. CR Hebd Seances Academic Science, 240, 1581–1583.Google Scholar
  67. Echalier, G. (1959). L’organe Y et ledeterminisme de la croissance et de la mue chez Carcinus maenas (L.), Crustace Decapode. Annales des Sciences Naturelles-Zoologie et Biologie Animale, 12, 1–59.Google Scholar
  68. Edgar, G. J. (1990). Predator-prey interactions in seagrass beds. I. The influence of macrofaunal abundance and size-structure on the diet and growth of the western rock lobster Panulirus cygnus George. Journal of Experimental Marine Biology and Ecology, 139, 1–22.CrossRefGoogle Scholar
  69. Engle, J. M. (1979). Ecology and growth of juvenile California spiny lobster, Panulirus interruptus (Randall). PhD thesis, University of Southern California.Google Scholar
  70. Ennis, G. P. (1973). Food, feeding and condition of lobsters, Homarus americanus, throughout the seasonal cycle in Bonavista Bay, Newfoundland. Journal of the Fisheries Research Board of Canada, 30, 1905–1909.CrossRefGoogle Scholar
  71. Fabens, A. J. (1965). Properties and fitting of the von Bertalanffy growth curve. Growth, 29, 265–289.PubMedGoogle Scholar
  72. Fernandez, R. (2002). Neuroendocrine control of vitellogenesis in the spiny lobster Panulirus homarus (Linnaeus, 1758). PhD thesis, Central Institute of Fisheries Education (Deemed University), Mumbai, India, pp 189Google Scholar
  73. Fernandez, R., & Radhakrishnan, E. V. (2010). Classification and mapping of neurosecretory cells in the optic, supraoesophageal and thoracic ganglia of the female spiny lobster Panulirus homarus (Linnaeus, 1758) and their secretory activity during vitellogenesis. Journal of the Marine Biological Association of India, 52(2), 237–248.Google Scholar
  74. Fernandez, R., & Radhakrishnan, E. V. (2016). Effect of bilateral eyestalk ablation on ovarian development and moulting in early and late intermoult stages of female spiny lobster Panulirus homarus (Linnaeus, 1758). Invertebrate Reproduction and Development, 60(3), 238–242.CrossRefGoogle Scholar
  75. Fielding, P. J., & Mann, B. Q. (1999). The Somalia inshore lobster resource. A survey of the lobster fishery of the northeastern region (Puntland) between FOAR and EYL during November 1998. IUCN Eastern Africa Programme, pp. 1–37.Google Scholar
  76. Fingerman, M. (1987). Endocrine mechanisms in crustaceans. Journal of Crustacean Biology, 7, 1–24.CrossRefGoogle Scholar
  77. Fingerman, M. (1997). Crustacean endocrinology: a retrospective, prospective and introspective analysis. Physiological Zoology, 70, 257–269.PubMedCrossRefGoogle Scholar
  78. Freeman, J. A., & Bartell, C. K. (1976). Some effects of molt-inhibiting hormone and 20-hydroxyecdysone upon molting in the grass shrimp, Palaemonetes pugio. General and Comparative Endocrinology, 28, 131–142.PubMedCrossRefGoogle Scholar
  79. Freeman, J. A., & Costlow, J. D. (1979). Hormonal control of apolysis in barnacle mantle tissue epidermis, in vitro. The Journal of Experimental Zoology, 270, 333–346.CrossRefGoogle Scholar
  80. Gabe, M. (1953). Sur l’existence chez quelques crustaces malacostraces d’ un organe comparate a la glande de la mue des insects. C Hebd Seances Seances Sciences, 237, 1111–1113.Google Scholar
  81. Gabe, M. (1954). Partcularites morphologiques de l’organe Y (glande de lamae) des crustaceas Malacostraces. Bulletin de la Société zoologique de France, 79, 166 (abtsr.).Google Scholar
  82. Gabe, M. (1956). Histologie compare de la glande de mue (organe Y) des crustaceas Malacostraces. Annual Science Natural Zoological Biological Animal [11] 18, 145–152 (Fisheries Research Board of Canada Traslated. Series, 1586).Google Scholar
  83. Ganeshkumar, A., Baskar, B., Santhanakumar, J., Vinithkumar, N. V., Vijayakumaran, M., & Kirubagaran, R. (2010). Diversity and functional properties of intestinal microbial flora of the spiny lobster Panulirus versicolor (Latreille, 1804). Journal of the Marine Biological Association India, 52(2), 282–285.Google Scholar
  84. George, M. J. (1967). Observations on the biology and fishery of the spiny lobster Panulirus homarus (Linnaeus). Proceedings of the Symposuim on Crustacea, Part IV. Marine biological Association of India, Mandapam Camp, India, 1308–1316.Google Scholar
  85. George, C. J., Reuben, N., & Muthe, P. T. (1955). The digestive system of Panulirus polyphagus (Herbst). Journal of Animal Morphology and Physiology, 2, 14–27.Google Scholar
  86. Goes, C. A., & Lins-Oliveira. (2009). Natural diet of the spiny lobster, Panulirus echinatus Smith, 1869 (Crustacea: Decapoda: Palinuridae), from São Pedro and São Paulo Archipelago, Brazil. Brazilian Journal of Biology, 69(1), 143–148.CrossRefGoogle Scholar
  87. Goñi, R., Quetglas, A., & Reñones, O. (2001). Diet of the spiny lobster Panulirus elephas (Decapoda: Palinuridae) from the Columbretes Islands Marine Reserve (north-western Mediterranean). Journal of the Marine Biological Association of the United Kingdom, 81, 347–348.CrossRefGoogle Scholar
  88. Gulland, J. A. (1983). Fish stock assessment: a manual of basic methods (FAO/Wiley series on food and agriculture). Chichester: Wiley.Google Scholar
  89. Gulland, J. A., & Holt, S. J. (1959). Estimation of growth parameters for data at unequal time intervals. Journal du Conseil CIEM, 44, 200–209.Google Scholar
  90. Hampshire, F., & Horn, D. H. S. (1966). Structure of crustecdysone, a crustacean moulting hormone. Chemical Communications, 1966, 37–38.Google Scholar
  91. Hanstrom, B. (1937). Incretory organs and hormonal functions in invertebrates. VIII. Neurosecretory organs of unknown function. I. The X organ of crustaceans. Ergebnisse der Biologie, 14, 214–219 (Fisheries Research Board of Canada, Translational. Series, 2731).Google Scholar
  92. Hanstrom, B. (1939). Hormones in Invertebrates. London/New York: Oxford University Press.Google Scholar
  93. Hanstrom, B. 1947. The brain, the sense organs and the incretory organs of the head in the crustacean Malacostraca. Acta Universitatis Lundensis [N.S.], 58, 1–44.Google Scholar
  94. Hartnoll, R. G. (1982). Growth. In: L. G. Abele (Ed.), The biology of Crustacea: 2. Embryology, morphology and genetics. The biology of Crustacea (pp. 111–196). New York: Academic.Google Scholar
  95. Hartnoll, R. G. (2001). Growth in Crustacea-twenty years on. Hydrobiologia, 449, 111–122.CrossRefGoogle Scholar
  96. Herrera, A., Ibarza’bal, D., Foyo, J., & Espinosa, J. (1991). Alimentacio’nnatural de la langosta Panulirus argus en la regio’n de Los Indios (plataforma SW de Cuba) y su relacio’n con el bentos. Review of Investigation Marine, 12, 172–182.Google Scholar
  97. Heydorn, A. E. F. (1969). Notes on the biology of Panulirus homarus and on length weight relationships of Jasus lalandii. South African Division of Sea Fish Investigation Report, 69.Google Scholar
  98. Hiatt, R. W. (1948). The biology of the lined shore crab, Pachygrapsus crassipes Randall. Pacific Sciences, 2, 135–213.Google Scholar
  99. Hopkins, P. M. (1982). Growth and regeneration patterns in the fiddler crab, Uca pugilator. Biological Bulletin (Woods Hole), 163, 301–319.CrossRefGoogle Scholar
  100. Horn, D. H. S., Middleton, E. J., Wunderlich, J. A., & Hampshire, F. (1966). Identity of the moulting hormones of insects and crustaceans. Chemical Communications, 1966, 339–340.Google Scholar
  101. Hunt, J. H., & Lyons, W. G. (1986). Factors affecting growth and maturation of spiny lobsters, Panulirus argus, in the Florida Keys. Canadian Journal of Fisheries and Aquatic Sciences, 43, 2243–2247.CrossRefGoogle Scholar
  102. Jayakody, D. S. (1991). On the growth, mortality and recruitment of the spiny lobster (Panulirus homarus) in Sri Lankan waters. NAGA, ICLARM Quarterly, 38–42.Google Scholar
  103. Jayawickrama, S. J. C. (1991). Fishery and population dynamics of Panulirus homarus (Linnaeus) from Mutwal, Sri Lanka. Journal of the National Science Council of Sri Lanka, 9(1), 53–62.Google Scholar
  104. Jernakoff, P., Phillips, B. F., & Fitzpatrick, J. J. (1993). The diet of post-puerulus western rock lobster Panulirus cygnus George at Seven Mile Beach, Western Australia. Marine and Freshwater Research, 44, 649–655.CrossRefGoogle Scholar
  105. Joll, L. M. (1982). Foregut evacuation of four foods by the Western rock lobster, Panulirus cygnus in Aquaria. Australian Journal of Marine & Freshwater Research, 33, 939–943.CrossRefGoogle Scholar
  106. Joll, L.M. (1984). Natural diet and growth of juvenile Western rock lobster Panulirus cygnus. PhD thesis. Perth: University of Western Australia.Google Scholar
  107. Joll, L. M., & Phillips, B. F. (1984). Natural diet and growth of juvenile Western rock lobster Panulirus cygnus. Journal of Experimental Marine Biology and Ecology, 75, 145–169.CrossRefGoogle Scholar
  108. Jong, K. (1993). Growth of the spiny lobster Panulirus homarus (Linnaeus, 1758), depending on sex and influenced by reproduction (Decapoda, Palinuridae). Crustaceana, 64(1), 18–23.CrossRefGoogle Scholar
  109. Juinio-Menez, M. A., & Ruinata, J. (1996). Survival, growth and food conversion efficiency of Panulirus ornatus following eyestalk ablation. Aquaculture, 146(3&4), 225–235.CrossRefGoogle Scholar
  110. Kagwade, P. V. (1987). Age and growth of the spiny lobster Panulirus polyphagus (Herbst) of Bombay waters. Indian Journal of Fisheries, 34(4), 389–398.Google Scholar
  111. Kagwade, P. V., & Kabli, L. M. (1996). Age and growth of the sand lobster Thenus orientalis (Lund) from Bombay waters. Indian Journal of Fisheries, 43(3), 241–247.Google Scholar
  112. Kanciruk, P. (1980). Ecology of juvenile and adult Palinuridae (spiny lobsters). In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (pp. 59–96). New York: Academic.CrossRefGoogle Scholar
  113. Kathirvel, M. (1973). The growth and regeneration of an aquarium held spiny lobster, Panulirus polyphagus (Herbst). Indian Journal of Fisheries, 20(1), 219–221.Google Scholar
  114. Kegel, G., Reichwein, B., Tensen, C. P., & Keller, R. (1991). Aminoacid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limosus. Emergence of a Novel neuropeptide. Peptides, 12(5), 909–913.PubMedCrossRefGoogle Scholar
  115. Keller, R. (1992). Crustacean neuropeptides: structures, functions and comparative aspects. Experientia, 48, 439–448.PubMedCrossRefGoogle Scholar
  116. Keller, R., & Schmid, E. (1979). In vitro secretion of ecdysteroids by Y-organ and lack of secretion by mandibular organs of the crayfish following molt induction. Journal of Comparative Physiology, 130, 347–353.CrossRefGoogle Scholar
  117. Kirubagaran, R., Peter, S. M., Dharani, G., Vinithkumar, N. V., Sreeraj, G., & Ravindran, R. (2005). Changes in vertebrate type steroids and 5-hydroxytryptamine during ovarian recrudescence in the Indian spiny lobster Panulirus homarus. New Zealand Journal of Marine Freshwater Research, 39, 527–537.CrossRefGoogle Scholar
  118. Kizhakudan, J. K. (2007). Reproductive biology, ecophysiology and growth in the mudspiny lobster Panulirus polyphagus and the sand lobster Thenus orientalis. PhD thesis, Bhavnagar University, Gujarat, 169 p.Google Scholar
  119. Kizhakudan, J. K. (2013). Effect of eyestalk ablation on moulting and growth in the mudspiny lobster Panulirus polyphagus (Herbst, 1793) held in captivity. Indian Journal of Fisheries, 60(1), 77–81.Google Scholar
  120. Kizhakudan, J. K., & Patel, S. K. (2011). Effect of diet on growth of the mud spiny lobster Panulirus polyphagus (Herbst, 1793) and the sand lobster Thenus orientalis (Lund, 1793) held in captivity. Journal of the Marine Biological Association of India, 53(2), 167–171.CrossRefGoogle Scholar
  121. Kizhakudan, J. K., Kizhakudan, S. J., & Patel, S. K. (2013). Growth and moulting in the mud spiny lobster, Panulirus polyphagus (Herbst, 1793). Indian Journal of Fisheries, 60(2), 79–86.Google Scholar
  122. Kleijn, D. P. V., & van Herp, F. (1995). Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comparative Biochemistry and Physiology Part B, 112, 573–579.CrossRefGoogle Scholar
  123. Kleinholz, L. H. (1975). Purified hormones from the crustacean eyestalks and their physiological specificity. Nature (London), 258, 256–257.CrossRefGoogle Scholar
  124. Knowles, F. G. W., & Carlisle, D. B. (1956). Endocrine control in the Crustacea. Biological reviews of the Cambridge Philosophical Society, 31, 396–473.CrossRefGoogle Scholar
  125. Kulmiye, A. J., & Mavuti, K. M. (2005). Growth and moulting of captive Panulirus homarus homarus in Kenya, western Indian Ocean. New Zealand Journal of Marine and Freshwater Research, 39(3), 539–549.CrossRefGoogle Scholar
  126. Kurata, H. (1962). Studies of age and growth of crustacean. Bulletin Hokkaido Reg Fisheries of Research Laboratory, 24, 1–114.Google Scholar
  127. Lafont, R. (1997). Ecdysteroid related molecules in animals and plants. Archives of Insect Biochemistry and Physiology, 35, 3–20.CrossRefGoogle Scholar
  128. Laufer, H. M., Landau, M., Borst, D., & Homola, H. (1986). The synthesis and regulation of methyl farnesoate, a new juvenile hormone for crustacean reproduction. In M. Porchet, J. C. Andries, & A. Dhainaut (Eds.), Advances in invertebrate reproduction (pp. 135–143). Amsterdam: Elsevier Publications.Google Scholar
  129. Laufer, H., Borst, D., Baker, F. C., Carrasco, C., & Sinkus, M. (1987). Identification of a juvenile hormone-like compound in a crustacean. Science, 235, 202–205.PubMedCrossRefGoogle Scholar
  130. Le Soyez, D., Caer, J. P., Noel, P. Y., & Rossier, J. (1991). Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarusamericanus. Neuropeptides, 20, 25–32.PubMedCrossRefGoogle Scholar
  131. Lindberg, R. G. (1955). Growth, population dynamics, and field behaviour in the spiny lobster, Panulirus interruptus (Randall). University of California, Publication Zoological, 59, 157–248.Google Scholar
  132. Lipcius, R. N., & Herrnkind, W. F. (1982). Molt cycle alterations in behavior, feeding and diel rhythms of a decapod crustacean, the spiny lobster Panulirus argus. Marine Biology, 68, 241–252.CrossRefGoogle Scholar
  133. Lyle, W. G., & MacDonald, C. D. (1983). Molt stage determination in the Hawaiian spiny lobster Panulirus marginatus. Journal of Crustacean Biology, 3(2), 208–216.CrossRefGoogle Scholar
  134. Majowski, J., Hampton, J., Jones, R., Laurec, A., & Rosenberg, A. A. (1987). Sensitivity of length-based methods for stock assessment. Report of Working group III. ICLARM Conference Proceedings, 13, 363–372.Google Scholar
  135. Mashaii, N., Rajabipour, F., & Shakouri, A. (2011). Feeding habits of the scalloped spiny lobster Panulirus homarus (Linnaeus, 1758) (Decapoda: Palinuridae) from the southeast coast of Iran. Turkish Journal of Fisheries and Aquatic Sciences, 11, 45–54.CrossRefGoogle Scholar
  136. Matsumoto, K. (1962). Experimental studies of the neurosecretory activities of the thoracic ganglion of a crab, Hemigrapsus sp. General and Comparative Endocrinology, 2, 4–11.PubMedCrossRefGoogle Scholar
  137. Mauchline, J. (1976). The Hiatt growth diagram for crustacean. Marine Biology, 35, 79–84.CrossRefGoogle Scholar
  138. Mauchline, J. (1977). Growth of shrimps, crabs and lobsters – An assessment. Journal du Conseil/Conseil Permanent International pour l’Exploration de la Mer, 37(2), 162–169.CrossRefGoogle Scholar
  139. Mayfield, S., Branch, G. M., & Cockcroft, A. C. (2000). Relationships among diet, growth rate, and food availability for the South African rock lobster, Jasus lalandii (Decapoda: Palinuridea). Crustaceana, 73, 815–834.CrossRefGoogle Scholar
  140. McWhinnie, M. A., & Mohrherr, C. J. (1970). Influence of eyestalk factors, intermolt cycle and season upon C-leucine incorporation into protein in the crayfish (Orconectes virilis). Comparative Biochemistry and Physiology, 34, 415–437.CrossRefGoogle Scholar
  141. Palmer, M. J., Phillips, B. & Smith, G. T. (1991). Application of Nonlinear Models with Random Coefficients to Growth Data. Biometrics, 47, 623.Google Scholar
  142. Mehanna, S., Al-Shijibi, S., Al-Jafary, J., & Al-Senaidi, R. (2012). Population dynamics and management of scalloped spiny lobster Panulirus homarus in Oman coastal waters. J. Biol. Agri.Healthcare, 2(10), 184–194.Google Scholar
  143. Mikami, S. (2005). Moulting behaviour responses of Bay lobster, Thenus orientalis, to environmental manipulation. New Zealand .Journal of Marine Freshwataer Research, 39, 297–302.Google Scholar
  144. Mills, B. J., & Lake, P. S. (1975). Setal development and moult staging in the crayfish Parastacoides tasmanicus (Erichson) (Decapoda, Parastacidae). Australian Journal of Marine & Freshwater Research, 26(1), 103–107.CrossRefGoogle Scholar
  145. Mohamed, K. S. (1989). Studies on the reproductive endocrinology of the penaeid prawn Penaeus indicus H. Milne Edwards. PhD thesis, Cochin University of Science and Technology.Google Scholar
  146. Mohammed, K. H., & George, M. J. (1968). Results of the tagging experiments on the Indian spiny lobster, Panulirus homarus (Linnaeus) – Movement and growth. Indian Journal of Fisheries, 15, 15–26.Google Scholar
  147. Morgan, G. R. (1980). Population dynamics of spiny lobsters. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters. Vol. 2. Ecology and management (pp. 189–218). New York: Academic.Google Scholar
  148. Munro, J. L. (1974). The biology, ecology, exploitation and management of Caribbean reef fishes, Part V.I. The biology, ecology and bioeconomics of Caribbean reef fishes: Crustaceans (spiny lobsters and crabs). Research Report Zoological Department, University of West Indies, 3, 57 pp.Google Scholar
  149. Munro, J. L. (1982). Estimation of the parameters of the von Bertalanffy growth equation from recapture data at variable time intervals. ICES Journal of Marine Science, 40, 199–200.CrossRefGoogle Scholar
  150. Munro, J. L. (1988). Growth and mortality rates and state of exploitation of spiny lobsters in Tonga. South Pacific Commission Workshop on Pacific Inshore Fisheries Resources, New Caledonia (Background Paper, Vol. 51, 34pp).Google Scholar
  151. Murdoch, W. W., & Oaten, A. (1975). Predation and population stability. Advances in Ecological Research, 9, 1–131.CrossRefGoogle Scholar
  152. Nair, R. V., Soundararajan, R., & Nandakumar, G. (1981). Observations on growth and moulting of spiny lobsters Panulirus homarus (Linnaeus), P. ornatus (Fabricius) and P. penicillatus (Olivier) in captivity. Indian Journal of Fisheries, 28(1&2), 25–35.Google Scholar
  153. Nakatsuji, T., & Sonobe, H. (2004). Regulation of ecdysteroid secretion from the Y-organ by molt-inhibiting hormone in the American crayfish Procambarus clarkii. General and Comparative Endocrinology, 135, 358–364.PubMedCrossRefGoogle Scholar
  154. Newman, G. G., & Pollock, D. E. (1974). Growth of the rock lobster Jasus lalandii and its relationship to benthos. Marine Biology, 24, 339–346.CrossRefGoogle Scholar
  155. Nicol, S. (1987). Some limitations on the use of the lipofuscin ageing technique. Marine Biology, 93, 609–614.CrossRefGoogle Scholar
  156. Ohira, T., Okumura, T., Suzuki, M., Yajima, Y., Tsusui, N., Wilder, M., & Nagasawa, H. (2006). Production and characterization of recombinant vitellogenesis-inhibiting hormone from the American lobster Homarus americanus. Peptides, 27, 1251–1258.PubMedCrossRefGoogle Scholar
  157. Otsu, T. (1960). Precocious development of the ovaries in the crab, Potamon dehaani, following implantation of the thoracic ganglion. Annotationes Zoologicae Japonenses, 33, 90–96.Google Scholar
  158. Palmer, M. J., Phillips, B., & Smith, G. T. (1991). Application of nonlinear models with random coefficients to growth data. Biometrics, 47, 623.CrossRefGoogle Scholar
  159. Panouse, J. B. (1943). Influence de Ì ablation du pėdoncle oculaire sur la croissance dė Ì ovaire chėz la crevette Leander serratus. Comptes rendus de l’Académie des Sciences, Paris, 217, 553–555.Google Scholar
  160. Panouse, J.B. 1947. La glande du sinus et la maturation des produits génitaux chez les crevettes. The Bulletin of Biology Fr. Belg (Suppl)Google Scholar
  161. Passano, L. M. (1951a). The X-organ sinus gland neurosecretory system in crab. The Anatomical Record, 111, 462–665.Google Scholar
  162. Passano, L. M. (1951b). The X-organ, a neurosecretory gland controlling molting in crabs. The Anatomical Record, 111, 559.Google Scholar
  163. Passano, L. M. (1953). Neurosecretory control of molting in crabs by the X-organ sinus gland complex. Physiologiia Comparata et Oecologia, 3, 155–189.Google Scholar
  164. Paterson, N. F. (1969). The behavior of captive rock lobster Jasus lalandii (H. Mile-Edwards). Annals. South African Museum, 52(10), 225–264.Google Scholar
  165. Pauly, D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fish Tech. pap.234: 32 p.Google Scholar
  166. Pauly, D., & Morgan, G. R. (Eds.). (1987). Length-based methods in fisheries research. ICLARM Corif Proceedings, 13, 468 pp.Google Scholar
  167. Pauly, D., David, N., & Ingles, J. (1980). ELEFAN I. User’s instructions and program listings. Mime O. ReportGoogle Scholar
  168. Peebles, J. B. (1977). A rapid technique for molt staging in live Macrobrachium rosenbergii. Aquaculture, 12(2), 173–180.CrossRefGoogle Scholar
  169. Phillips, B. F., Cobb, J. S., & George, R. W. (1980). General biology. In J. S. Cobb & B. F. Phillips (Eds.), The biology and management of lobsters (Vol. II, pp. 1–82). New York: Academic.Google Scholar
  170. Phillips, B. F., Palmer, M. J., Cruz, R., & Trendall, J. T. (1992). Estimating growth of the spiny lobsters Panulirus cygnus, P. argus and P. ornatus. Australian Journal of Marine & Freshwater Research, 43, 1177–1188.CrossRefGoogle Scholar
  171. Pitcher, R. (1993). Spiny lobster: In: A. Wright, & L. Hill (Eds.), Nearshore marine resources of the South Pacific, Suva: Institute of Pacific Studies (pp. 539–608). Honiara: Forum Fisheries Agency and Halifax: International Centre for Ocean Development.Google Scholar
  172. Plaut, I., & Fishelson, L. (1991). Population structure and growth in captivity of the spiny lobster Panulirus penicillatus from Dahab, Gulf of Aqaba, Red sea. Marine Biology, 111, 467–472.CrossRefGoogle Scholar
  173. Pollock, D. E. (1979). Predator-Prey Relationships Between the Rock Lobster Jasus lalandii and the Mussel Aulacomya ater at Robben Island on the Cape West Coast of Africa. Marine Biology, 52, 347–356.CrossRefGoogle Scholar
  174. Prescott, J. (1988). Tropical spiny lobsters: An overview of their biology, the fisheries and the economics with particular reference to the double-spined rock lobster P. penicillatus (SPC Workshop on Pacific Inshore Fisheries Research), New Caledonia, WP 12, 36 pp.Google Scholar
  175. Quackenbush, L. S., & Herrnkind, W. F. (1981). Regulation of molt and gonadal development in the spiny lobster, Panulirus argus (Crustacea: Palinuridae): Effect of eyestalk ablation. Comparative Biochemistry and Physiology, 69, 523–527.CrossRefGoogle Scholar
  176. Quackenbush, L. S., & Herrnkind, W. F. (1983). Partial characterization of eyestalk hormones controlling molt and gonadal development in the spiny lobster, Panulirus argus. Journal of Crustacean Biology, 3(1), 34–44.CrossRefGoogle Scholar
  177. Quackenbush, L. S., & Keeley, L. L. (1988). Regulation of vitellogenesis in the fiddler crab Uca pugilator. The Biological Bulletin, 5, 321–331.CrossRefGoogle Scholar
  178. Radhakrishnan, E. V. (1989). Physiological and biochemical studies on the spiny lobster Panulirus homarus. PhD thesis, University of Madras, Chennai.Google Scholar
  179. Radhakrishnan, E. V. (1994, August 29–31). Commercial prospects for farming spiny lobsters. Aquaculture towards the 21st century: Proceedings of the INFOfish-Aquatech’94 Conference, Colombo, Sri Lanka, pp 96–102.Google Scholar
  180. Radhakrishnan, E. V., & Vijayakumaran, M. (1984a). Effect of eyestalk ablation in the spiny lobster Panulirus homarus (Linnaeus) 1. On moulting and growth. Indian Journal Fisheries, 31, 130–147.Google Scholar
  181. Radhakrishnan, E. V., & Vijayakumaran, M. (1984b). Effect of eyestalk ablation in the spiny lobster Panulirus homarus (linnaeus): 3. on gonadal maturity. Indian Journal Fisheries, 31, 209–216.Google Scholar
  182. Radhakrishnan, E. V., & Vijayakumaran, M. (1998). Observations on the moulting behaviour of the spiny lobster Panulirus homarus (Linnaeus). Indian Journal Fisheries, 45(3), 331–338.Google Scholar
  183. Radhakrishnan, E. V., & Vivekanandan, E. (2004). Prey preference and feeding strategies of the spiny Lobster Panulirus homarus (Linnaeus) predating on the green mussel Perna viridis (Linnaeus). Program and Abstracts of the 7th international conference and workshop on lobster biology and management, 40 pp.Google Scholar
  184. Radhakrishnan, E. V., Chakraborty, R. D., Baby, P. K., & Radhakrishnan, M. (2013). Fishery and population dynamics of the sand lobster Thenus unimaculatus (Burton & Davie, 2007) landed by trawlers at Sakthikulangara Fishing Harbour in the south-west coast of India. Indian Journal of Fisheries, 60(2), 7–12.Google Scholar
  185. Radhakrishnan, E. V., Thangaraja, R., & Vijayakumaran, M. (2015). Ontogenetic changes in morphometry of the spiny lobster, Panulirus homarus homarus (Linnaeus, 1758) from southern Indian coast. Journal of the Marine Biological Association of India, 57(1), 5–13.CrossRefGoogle Scholar
  186. Rangarao, K. (1965). Isolation and partial characterization of the molt-inhibiting hormone of the crustacean eyestalk. Experientia, 21, 593–594.PubMedCrossRefGoogle Scholar
  187. Rao, K. R., Fingerman, S. W., & Fingerman, M. (1973). Effects of exogenous ecdysones on the molt cycles of fourth and fifth stage American lobsters, Homarus americanus. Comparative Biochemistry & Physiology Part A, 44(4), 1105–1120.CrossRefGoogle Scholar
  188. Raviv, S., Parnes, S., Segall, C., Davis, C., & Sagi, A. (2006). Complete sequence of Litopenaeus vannamei (Crustacea: Decapoda) vitellogenin cDNA and its expression in endocrinologically induced sub-adult females. General and Comparative Endocrinology, 145, 39–50.PubMedCrossRefGoogle Scholar
  189. Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Journal of the Fisheries Research Board of Canada, 191, 1–382.Google Scholar
  190. Sainte-Marie, B., & Chabot, D. (2002). Ontogenic shifts in natural diet during benthic stages of American lobster (Homarus americanus), off the Magdalen Islands. Fishery Bulletin, 100(1), 106–116.Google Scholar
  191. Sanders, M. J., & Bouhlel, M. (1984). Stock assessment of the rock lobster (Panulirus homarus) inhabiting the coastal waters of the People’s Democratic Republic of Yemen. FAO, Roame, RAB/81/002/21: 67p.Google Scholar
  192. Sanders, M., & Liyanage, U. (2009). Preliminary assessment for the spiny lobster fishery of the south coast (Sri Lanka) (pp. 1–44). Sri Lanka: NARA.Google Scholar
  193. Sarojini, R., Nagabhushanam, R., & Fingerman, M. (1995). In vitro inhibition by dopamine of 5-hydroxytryptamine-stimulated ovarian maturation in the red swamp crayfish, Procambarus clarkii. Experientia, 52(7), 707–709.CrossRefGoogle Scholar
  194. Sastry, A. N. & French, D.P. (1977). Growth of American lobster, Homarus americanus Milne-Edwards, under controlled conditions. Circular-CSIRO Division of Fisheries and Oceanography (Aust.). 7, 11 (abstr.)Google Scholar
  195. Scarratt, D. J. (1980). The food of the lobster. In J. D. Pringle, G. J. Sharp, & J. F. Caddy (Eds.), Proceedings of the workshop on the relationship between sea urchin grazing and commercial plant/animal harvesting (Canadian technical report of fisheries and aquatic sciences, pp. 66–91), 954.Google Scholar
  196. Scudamore, H. (1947). The influence of the sinus glands in the crayfish. Physiological Zoology, 20, 187–208.PubMedCrossRefGoogle Scholar
  197. Senevirathna, J. D. M., Thushari, G. G. N., & Munasinghe, D. H. N. (2014). Length-weight relationship of spiny lobster Panulirus homarus population inhabiting southern coastal region of Sri Lanka. Journal of Environmental Sciences, 3(2), 607–614.Google Scholar
  198. Shears, N. I., & Babcock, R. I. (2002). Marine reserves demonstrate top-down control of community structure on temperature reefs. Oecologia, 132(1), 131–142.PubMedCrossRefGoogle Scholar
  199. Sheehy, M. R. J. (1990). Potential of morphological lipofuscin age pigment as an index of crustacean age. Marine Biology, 107, 439–442.CrossRefGoogle Scholar
  200. Sheehy, M. R. J. (1992). Lipofuscin age pigment accumulation in the brains of aging field and laboratory reared crayfish Cherax quadricannatus (von Martens) (Decapoda: Parastacidae). Journal of Experimental Marine Biology and Ecology, 161, 79–89.CrossRefGoogle Scholar
  201. Sheehy, M., Caputi, N., Chubb, C., & Belchie, M. (1998). Use of lipofuscin for resolving cohorts of western rock lobster (Panulirus cygnus). Canadian Journal of Fisheries and Aquatic Sciences, 55, 925–936.CrossRefGoogle Scholar
  202. Smale, J. M. (1978). Migration, growth and feeding in the Natal rock lobster Panulirus homarus (Linnaeus). South African Association for Marine Biological Research Investigation Report, Vol. 47.Google Scholar
  203. Smith, R. I. (1940). Studies on the effect of eyestalk removal upon young crayfish (Cambarus clarkii Girard). The Biological Bulletin, 79, 145–152.CrossRefGoogle Scholar
  204. Smith, D. M. & Dall, W. (1985). Moult staging in the tiger prawn Penaeus esculentus. In: Proceedings of the Second Australian Prawn Seminar, Kooralbyn, Queensland, Australia, pp 85–93.Google Scholar
  205. Sochasky, J. B. (1973). Failure to accelerate moulting following eyestalk ablation in decapod crustaceans: a review of the literature. Fisheries Research Bd Canadian Technical Report, 431, 1–127.Google Scholar
  206. Soumoff, C., & O’Connor, J. (1982). Response of Y-organ secretory activity by molt inhibiting hormone in the crab Pachygrapsus crassipes. General and Comparative Endocrinology, 48, 432–439.PubMedCrossRefGoogle Scholar
  207. Soyez, D. Le Caer, J. P., Noel, P. Y. & Rossier, J. (1991). Primary structure of two isoforms of the vitellogenesis inhibiting hormone from the lobster Homarus americanus. Neuropeptides, 20, 25–32Google Scholar
  208. Sparre, P., Ursin, E., & Venema S. C. (1989). Introduction to tropical fish stock assessment. 1. Manual (Fisheries technical Paper, 3M/I: xii + 337 pp). Rome: FAO. Google Scholar
  209. Spaziani, E., Ostedgaard, L. S., Vensel, W. H., & Hegman, J. P. (1982). Effects of eyestalk removal in crabs: Relation to normal premolt. Journal of Experimental Zoology Part A, 221(3), 323–327.CrossRefGoogle Scholar
  210. Stevenson, J. R., Guckert, R. C., & Cohen, J. D. (1968). Lack of correlation of some proecdysal growth and developmental processes in the crayfish. Biological Bulletin (Woods Hole. MA), 134, 160–175.CrossRefGoogle Scholar
  211. Subramoniam, T. (1999). Egg production of economically important crustaceans. Current Science, 76, 350–360.Google Scholar
  212. Subramoniam, T., & Kirubagaran, R. (2010). Endocrine regulation of vitellogenesis in lobsters. Journal of the Marine Biological Association of India, 52(2), 229–236.Google Scholar
  213. Tamone, S. L., & Chang, E. S. (1993). Methyl farnesoate stimulates ecdysteroid secretion from crab Y-organs in vitro. General and Comparative Endocrinology, 89, 425–432.PubMedCrossRefGoogle Scholar
  214. Tegner, M. J., & Dayton, P. K. (1981). Population structure, recruitment and mortality of two sea urchins Strongylocentrotus fransiscanus and S. purpuratus in a kelp forest. Marine Ecology Progress Series, 5, 155–168.CrossRefGoogle Scholar
  215. Thangaraja, R., & Radhakrishnan, E. V. (2012). Fishery and ecology of the spiny lobster Panulirus homarus (Linnaeus, 1758) at Khadiyapatanam in the southwest coast of India. Journal of the Marine Biological Association of India, 54(2), 69–79.Google Scholar
  216. Thangaraja, R., Radhakrishnan, E. V., & Chakraborthy, R. D. (2015). Stock and population characteristics of the Indian rock lobster Panulirus homarus homarus (Linnaeus, 1758) from Kanyakumari, Tamilnadu, on the southern coast of India. Indian Journal of Fisheries, 62(3), 21–27.Google Scholar
  217. Thomas, M. M. (1972). Growth of the spiny lobster, Panulirus homarus (Linnaeus) in captivity. Indian Journal of Fisheries, 19, 125–129.Google Scholar
  218. Travis, D. F. (1954). The molting cycle of the spiny lobster, Panulirus argus Latreille.1. Molting and growth in laboratory-maintained individuals. The Biological Bulletin, 107, 433–450.CrossRefGoogle Scholar
  219. Tsukimura, B., & Borst, D. W. (1992). Regulation of methyl farnesoate in the hemolymph and mandibular organ of the lobster Homarus americanus. General and Comparative Endocrinology, 86, 297–303.PubMedCrossRefGoogle Scholar
  220. Turnbull, C. T. (1989). Pleopod cuticular morphology as an index of moult stage in the Ornate Rock Lobster Panulirus ornatus (Fabricius). Australian Journal of Marine & Freshwater Research, 40, 285–293.CrossRefGoogle Scholar
  221. Uchida, R. N., & Tagami, D. T. (1984). Biology, distribution, population structure, and pre-exploitation abundance of spiny lobster, Panulirus marginatus (Quoy and Gaimard), in the Northwestern Hawaiian Islands. In: Grigg, R. W. & Tanoue, K. T. (Eds.), Proceedings of the Symposuim on Resourch Investigation in the Northwestern Hawaiian Islands, Vol. 1, April 24–25, 1980, University of Hawaii, Honolulu, Hawaii, pp. 157–198. UNIHI-SEAGRANT-MR-84-01.Google Scholar
  222. Van Herp, F., & Bellon-Humbert, C. (1978). Setal development and molt prediction in the larvae and adults of the crayfish Astacus leptodactylus (Nordmann, 1842). Aquaculture, 14(4), 289–301.CrossRefGoogle Scholar
  223. Von Bertalanffy, L. (1938). A quantitative theory of organic growth. Human Biology, 10(2), 181–213.Google Scholar
  224. Waddy, S. L., Aiken, D. E., & de Kleijn, D. P. V. (1995). Control of growth and reproduction. In J. F. Factor (Ed.), Biology of the lobster, Homarus americanus (pp. 217–266). San Diego: Academic.CrossRefGoogle Scholar
  225. Wahle, R. A., & Fogarty, M. J. (2006). Growth and development: Understanding and modeling growth variability in lobsters. In B. F. Phillips (Ed.), Lobsters: biology, management aquaculture and fisheries (pp. 1–44). Oxford: Blackwell Publishing.Google Scholar
  226. Wahle, R. A., Tully, O., & O’Donovan, V. (1996). Lipofuscin as an indicator of age in crustaceans: analysis of the pigment in the American lobster Homarus americanus. Marine Ecology Progress Series, 138, 117–123.CrossRefGoogle Scholar
  227. Wahle, R. A., Tully, O., & O’Donovan, V. (2001). Environmentally mediated crowding effects on growth, survival and metabolic rate of juvenile American lobsters (Homarus americanus). Marine and Freshwater Research, 52, 1157–1166.CrossRefGoogle Scholar
  228. Webster, S. G. (1998). Neuropeptides inhibiting growth and reproduction in crustaceans. In G. M. Coast & S. G. Webster (Eds.), Recent advances in arthropod endocrinology (pp. 33–52). Cambridge: Cambridge University.Google Scholar
  229. Weiss, H. M. (1970). The diet and feeding behavior of the lobster, Homarus americanus, in Long Island Sound. PhD dissertation, University, Connecticut, Storrs, CT, 80 p.Google Scholar
  230. Werner, E. E., & Gilliam, J. F. (1984). The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology, Evolution, and Systematics IS, 393–425.Google Scholar
  231. Wetherall, J. A. (1986). A new method for estimating growth and mortality parameters from length-frequency data. ICLARM Fishbyte, 4, 12–14.Google Scholar
  232. Williams, M. J. (1981). Methods for analysis of natural diet in portunid crabs (Crustacea: Decapoda: Portunidae). Journal of Experimental Marine Biology and Ecology, 52(1), 103–113.CrossRefGoogle Scholar
  233. Windell, S. C. (2015). Spiny Lobster (Panulirus interruptus) Use of the Intertidal Zone at a Santa Catalina Island MPA in Southern California. Capstone Projects and theses (Paper 579).Google Scholar
  234. Zeleny, C. (1905). Compensatory regulation. The Journal of Experimental Zoology, 2, 1–102.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.ICAR-Central Marine Fisheries Research InstituteCochinIndia

Personalised recommendations