Advertisement

Improving Image Quality and Convergence Rate of Perona–Malik Diffusion Based Compressed Sensing MR Image Reconstruction by Gradient Correction

  • Ajin JoyEmail author
  • Joseph Suresh Paul
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1022)

Abstract

A memory-based reconstruction algorithm is developed for optimizing image quality and convergence rate of Compressed Sensing-Magnetic Resonance Image (CS-MRI) reconstruction using Perona–Malik (PM) diffusion. The PM diffusion works by estimating the underlying structure of an image and diffusing the image in a nonlinear fashion to preserve the sharpness of edge information. The edges due to undersampling artifacts are generally characterized as weak edges (false edges) identified by the comparatively smaller gradient magnitude associated with it. The convergence rate for CS-MRI reconstruction based on PM diffusion, therefore, depends on the extent by which the gradients attributed to false edges are diffused off per iteration. However, if the undersampling interference in high, gradient magnitudes of false edges can become comparable to that of true edges (boundaries of actual anatomical features). This might either lead to preservation of false edges or diffusion of true edges. This reduces the quality of reconstructed images. In such scenarios, we assume that the gradient information in past iterations contains useful structural information of the image which is lost while diffusing the image. Hence, we propose to overcome this problem by correcting the estimate of the underlying structure of the image using a combination of gradient information from a number of past iterations. This reduces the diffusion of weak edges by restoring the otherwise lost weak structural information at every iteration.

Keywords

Perona–Malik diffusion Compressed sensing Gradient correction Memory Nonlinear diffusion 

Notes

Acknowledgements

Authors are thankful to the Council of Scientific and Industrial Research-Senior Research Fellowship (CSIR-SRF, File No: 09/1208(0002)/2018.EMR-I) and planning board of Govt. of Kerala (GO(Rt)No.101/2017/ITD.GOK(02/05/2017)), for financial assistance. Authors also thank the researchers who publicly shared the datasets used in this work.

References

  1. 1.
    Candes, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)CrossRefGoogle Scholar
  4. 4.
    Guerquin-Kern, M., Haberlin, M., Pruessmann, K.P., Unser, M.: A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Trans. Med. Imaging 30(9), 1649–1660 (2011)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Cai, J.F., Zhan, Z., Guo, D., Ye, J., Chen, Z., Qu, X.: Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging. PLoS ONE 10(4), E0119584 (2015)CrossRefGoogle Scholar
  6. 6.
    Montefusco, L.B., Lazzaro, D., Papi, S.: Nonlinear filtering for sparse signal recovery from incomplete measurements. IEEE Trans. Signal Proc. 57(7), 2494–2502 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Montefusco, L.B., Lazzaro, D., Papi, S.: Fast sparse image reconstruction using adaptive nonlinear filtering. IEEE Trans. Image Proc. 20(2), 534–544 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Li, X.: The magic of nonlocal Perona-Malik diffusion. IEEE Signal Process. Lett. 18(9), 533–534 (2011)CrossRefGoogle Scholar
  9. 9.
    Liu, P., Xiao, L., Zhang, J.: Fast second degree total variation method for image compressive sensing. PLoS ONE 10(9), E0137115 (2015)CrossRefGoogle Scholar
  10. 10.
    Liu, Y., Zhan, Z., Cai, J.F., Guo, D., Chen, Z., Qu, X.: Projected iterative soft-thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging. IEEE Trans. Med. Imaging 35(9), 2130–2140 (2016)CrossRefGoogle Scholar
  11. 11.
    Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028–1041 (2011)CrossRefGoogle Scholar
  12. 12.
    Qu, X., Guo, D., Ning, B., Hou, Y., Lin, Y., Cai, S., Chen, Z.: Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30(7), 964–977 (2012)CrossRefGoogle Scholar
  13. 13.
    Ning, B., Qu, X., Guo, D., Hu, C., Chen, Z.: Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization. Magn. Reson. Imaging 31(9), 1611–1622 (2013)CrossRefGoogle Scholar
  14. 14.
    Lai, Z., Qu, X., Liu, Y., Guo, D., Ye, J., Zhan, Z., Chen, Z.: Image reconstruction of compressed sensing MRI using graph-based redundant wavelet transform. Med. Image Anal. 27, 93–104 (2016)CrossRefGoogle Scholar
  15. 15.
    Zhan, Z., Cai, J.F., Guo, D., Liu, Y., Chen, Z., Qu, X.: Fast multi-class dictionaries learning with geometrical directions in MRI. IEEE Trans. Biomed. Eng. 63(9), 1850–1861 (2016)CrossRefGoogle Scholar
  16. 16.
    Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)CrossRefGoogle Scholar
  17. 17.
    Baker, C.A., King, K., Liang, D., Ying, L.: Translational-invariant dictionaries for compressed sensing in magnetic resonance imaging. In: Proceedings of IEEE International Symposium on Biomedical Imaging, 2011, pp. 1602–1605Google Scholar
  18. 18.
    Joy, A., Paul, J.S.: Multichannel compressed sensing MR Image reconstruction using statistically optimized nonlinear diffusion. Magn. Reson. Med. 78(2), 754–762 (2017)CrossRefGoogle Scholar
  19. 19.
    Joy, A., Paul, J.S.: A mixed order nonlinear diffusion compressed sensing MR image reconstruction. Magn. Reson. Med. 00, 1–8 (2018).  https://doi.org/10.1002/mrm.27162CrossRefGoogle Scholar
  20. 20.
    Saucedo, A., Joy, A., Daar, E.S., Guerrero, M., Paul, J.S., Sarma, M.K., Thomas, M.A.: Comparison of compressed sensing reconstruction for 3D echo planar spectroscopic imaging data using total variation and statistically optimized Perona-Malik non-linear diffusion. In: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB 2018 June. International Society for Magnetic Resonance in Medicine (ISMRM), Paris, France (in press)Google Scholar
  21. 21.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  22. 22.
    Tsiostsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013)CrossRefGoogle Scholar
  23. 23.
    Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.A.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging 11(2), 221–32 (1992)Google Scholar
  24. 24.
    Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–74 (2009)Google Scholar
  25. 25.
    Chen, G., Zhang, J., Li, D.: Fractional-order total variation combined with sparsifying transforms for compressive sensing sparse image reconstruction. J. Vis. Commun. Image Represent. 38, 407–22 (2016)Google Scholar
  26. 26.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)CrossRefGoogle Scholar
  27. 27.
    Qu, X.: T2 weighted brain. https://sites.google.com/site/xiaoboxmu/publication. Accessed 04 Aug 2018

Copyright information

© Springer Nature Singapore Pte Ltd. 2020

Authors and Affiliations

  1. 1.Medical Image Computing and Signal Processing LaboratoryIndian Institute of Information Technology and Management-Kerala (IIITM-K)TrivandrumIndia

Personalised recommendations