Advertisement

Microbes for Bioremediation of Heavy Metals

  • Ravindra Soni
  • Biplab Dash
  • Prahalad Kumar
  • Udit Nandan Mishra
  • Reeta Goel
Chapter

Abstract

Heavy metal pollution is expanding its arms to every nook and corner of this living world, thereby swamping our ecosystem with heavy metals that prove to be hazardous for plants, animals, and humans. One of the most common, eco-friendly strategies that can be employed to counter this problem effectively is bioremediation for alleviating the stress of heavy metal contamination. To implement this strategy, exploration and identification of heavy metal resistance microbes is need of the hour.

Keywords

Heavy metals Bacteria Bioremediation Eco-friendly approach 

References

  1. Abedin MJ, Cotter-Howells J, Meharg AA (2002) Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant Soil 240(2):311–319CrossRefGoogle Scholar
  2. Abou-Shanab RAI, van Berkum P, Angle JS (2007) Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68(2):360–367PubMedCrossRefPubMedCentralGoogle Scholar
  3. Ahemad M (2012) Implications of bacterial resistance against heavy metals in bioremediation: a review. J Institute of Integrative Omics and Applied Biotechnology(IIOAB) 3(3)Google Scholar
  4. Alia N, Sardar K, Said M, Salma K, Sadia A, Sadaf S, Toqeer A, Miklas S (2015) Toxicity and bioaccumulation of heavy metals in spinach (Spinacia oleracea) grown in a controlled environment. Int J Environ Res Public Health 12(7):7400–7416PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp., an exopolysaccharide-producing halophilic bacterium. Progress Biol Sci 2(1):1–11Google Scholar
  7. Anderson C, Cook GM (2004) Isolation and characterization of arsenate-reducing bacteria from arseniccontaminated sites in New Zealand. Curr Microbiol 48:341–347PubMedCrossRefPubMedCentralGoogle Scholar
  8. Anyanwu CU, Ugwu CE (2010) Incidence of arsenic resistant bacteria isolated from a sewage treatment plant. Int J Basic Appl Sci 10:64–78Google Scholar
  9. Asati A, Pichhode M, Nikhil K (2016) Effect of heavy metals on plants: an overview. Int J Appl Innov Eng Manage 5:2319–4847Google Scholar
  10. Bachate SP, Cavalca L, Andreoni V (2009) Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains. J Appl Microbiol 107(1):145–156PubMedCrossRefGoogle Scholar
  11. Bayat B, Sari B (2010) Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge. J Hazard Mater 174(1–3):763–769PubMedCrossRefPubMedCentralGoogle Scholar
  12. Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17(1):21–34CrossRefGoogle Scholar
  13. Bradl HB (2005) Sources and origins of heavy metals. In: Interface science and technology, vol 6. Elsevier, pp 1–27Google Scholar
  14. Chang YC, Nawata A, Jung K, Kikuchi S (2012) Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil. J Ind Microbiol Biotechnol 39(1):37–44PubMedCrossRefPubMedCentralGoogle Scholar
  15. Chen CW, Chen CF, Dong CD (2012) Distribution and accumulation of mercury in sediments of Kaohsiung River mouth, Taiwan. APCBEE Procedia 1:153–158CrossRefGoogle Scholar
  16. Chen M, Xu P, Zeng G, Yang C, Huang D, Zhang J (2015) Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: applications, microbes and future research needs. Biotechnol Adv 33(6):745–755PubMedCrossRefGoogle Scholar
  17. Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12CrossRefGoogle Scholar
  18. Chien C-C, Hung C-W, Han C-T (2007) Removal of cadmium ions during stationary growth phase by an extremely cadmium-resistant strain of Stenotrophomonas sp. Environ Toxicol Chem 26(4):664PubMedCrossRefGoogle Scholar
  19. Clausen CA (2000) Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Manag Res 18(3):264–268CrossRefGoogle Scholar
  20. Coelho LM, Rezende HC, Coelho LM, de Sousa PA, Melo DF, Coelho NM (2015) Bioremediation of polluted waters using microorganisms. Advances in Bioremediation of Wastewater and Polluted Soil: InTech 3(4):1–22Google Scholar
  21. Dash B, Soni R, Goel R (2019) Rhizobacteria for reducing heavy metal stress in Plant and soil. In: Sayyed RZ et al (eds) Plant growth promoting Rhizobacteria for sustainable stress management, microorganisms for sustainability 12. Springer Nature Singapore Pte LtdGoogle Scholar
  22. Dey U, Chatterjee S, Mondal NK (2016) Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnol Rep 10:1–7CrossRefGoogle Scholar
  23. El. Bestawy E, Helmy S, Hussien H, Fahmy M, Amer R (2013) Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria. Appl Water Sci 3(1):181–192Google Scholar
  24. Eugenio FB (2008) Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci Total Environ 389(1):1–9CrossRefGoogle Scholar
  25. Faroon O, Ashizawa A, Wright S, Tucker P, Jenkins K, Ingerman L, Rudisill C (2012) Toxicological profile for cadmiumGoogle Scholar
  26. Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46CrossRefGoogle Scholar
  27. García-García JD, Sánchez-Thomas R, Moreno-Sánchez R (2016) Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms. Biotechnol Adv 34(5):859–873PubMedCrossRefGoogle Scholar
  28. Girma G (2015) Microbial bioremediation of some heavy metals in soils: an updated review. Indian J Sci Res 6(1):147–161Google Scholar
  29. Ghodsi H, Hoodaji M, Tahmourespour A, Gheisari MM (2011) Investigation of bioremediation of arsenic by bacteria isolated from contaminated soil. Afr J Microbiol Res 5(32):5889–5895Google Scholar
  30. Goel R, Suyal DC, Kumar V, Jain L, Soni R (2017) Stress-tolerant beneficial microbes for sustainable agricultural production. In: Panpatte DG et al (eds) Microorganisms for green revolution, microorganisms for sustainability. Springer Nature Singapore Pte LtdGoogle Scholar
  31. Grant CA, Sheppard SC (2008) Fertilizer impacts on cadmium availability in agricultural soils and crops. Hum Ecol Risk Assess Int J 14(2):210–228CrossRefGoogle Scholar
  32. Guo H, Luo S, Liang C, Xiao X, Xi Q, Wei W, Zeng G, Liu C, Wan Y, Chen J, He Y (2010) Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresour Technol 101(22):8599–8605PubMedCrossRefPubMedCentralGoogle Scholar
  33. Gupta A, Joia J, Sood A, Sood R, Sidhu C et al (2016) Microbes as potential tool for remediation of heavy metals: a review. J Microb Biochem Technol 8:364–372.  https://doi.org/10.4172/1948-5948.1000310CrossRefGoogle Scholar
  34. Halttunen T, Salminen S, Tahvonen R (2007) Rapid removal of lead and cadmium from water by specific lactic acid bacteria. Int J Food Microbiol 114:30–35PubMedCrossRefGoogle Scholar
  35. Hansda A, Kumar V, Anshumali (2016) A comparative review towards potential of microbial cells for heavy metal removal with emphasis on biosorption and bioaccumulation. World J Microbiol Biotechnol 32(10):170CrossRefGoogle Scholar
  36. Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E, Roels HA, Carleer R, Staessen JA (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103(1):30–37PubMedCrossRefGoogle Scholar
  37. Huang T-L, Huang L-Y, Shih-Feng F, Trinh N-N, Huang H-J (2014) Genomic profiling of rice roots with short- and long-term chromium stress. Plant Mol Biol 86(1–2):157–170PubMedCrossRefPubMedCentralGoogle Scholar
  38. Jabbari Nooghabi M, Jabbari Nooghabi H, Nasiri P (2010) Detecting outliers in gamma distribution. Communications in Statistics - Theory Methods 39(4):698–706CrossRefGoogle Scholar
  39. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72PubMedPubMedCentralCrossRefGoogle Scholar
  40. Janssen PJ, Houdt RV, Moors H, Monsieurs P, Morin N, Michaux A (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433PubMedPubMedCentralCrossRefGoogle Scholar
  41. Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238(3):201–208PubMedCrossRefPubMedCentralGoogle Scholar
  42. Jebelli MA, Maleki A, Amoozegar MA, Kalantar E, Shahmoradi B, Gharibi F (2017) Isolation and identification of indigenous prokaryotic bacteria from arsenic-contaminated water resources and their impact on arsenic transformation. Ecotoxicol Environ Saf 140:170–176PubMedCrossRefGoogle Scholar
  43. Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87PubMedCrossRefGoogle Scholar
  44. Kalita D, Joshi SR (2017) Study on bioremediation of Lead by exopolysaccharide producing metallophilic bacterium isolated from extreme habitat. Biotechnol Rep 16:48–57.  https://doi.org/10.1016/j.btre.2017.11.003CrossRefGoogle Scholar
  45. Kang C-H, Kwon Y-J, So J-S (2016) Bioremediation of heavy metals by using bacterial mixtures. Ecol Eng 89:64–69CrossRefGoogle Scholar
  46. Kimbrough DE, Cohen Y, Winer AM, Creelman L, Mabuni C (1999) A critical assessment of chromium in the environment. Crit Rev Environ Sci Technol 29(1):1–46CrossRefGoogle Scholar
  47. Kumar P, Gupta SB, Anurag, Soni R (2019) Bioremediation of cadmium by mixed indigenous isolates Serratia liquefaciens BSWC3 and Klebsiella pneumoniae RpSWC3 isolated from industrial and mining affected water samples. Pollution 5(2):351–360Google Scholar
  48. Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A review on bioremediation of heavy metals in contaminated water. IOSR J Environ Sci Toxicol Food Technol 8(7):44–50CrossRefGoogle Scholar
  49. Lane EA, Canty MJ, More SJ (2015) Cadmium exposure and consequence for the health and productivity of farmed ruminants. Res Vet Sci 101:132–139PubMedCrossRefGoogle Scholar
  50. Lemire JA, Harrison JJ, Turner RJ (2013) Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol 11(6):371–384PubMedCrossRefGoogle Scholar
  51. Liao VH-C, Chu Y-J, Yu-Chen S, Hsiao S-Y, Wei C-C, Liu C-W, Liao C-M, Shen W-C, Chang F-J (2011) Arsenite-oxidizing and arsenate-reducing bacteria associated with arsenic-rich groundwater in Taiwan. J Contam Hydrol 123(1–2):20–29PubMedCrossRefGoogle Scholar
  52. Mathivanan K, Rajaram (2014) Isolation and characterization of cadmium resistant bacteria from an industrially polluted coastal ecosystem on the southeast coast of India. Chem and Ecolog 30(7):622–635CrossRefGoogle Scholar
  53. Ma Y, Prasad MN, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258PubMedPubMedCentralCrossRefGoogle Scholar
  54. Maier RM, Pepper IL, Gerba CP (2009) Environmental microbiology. Academic, San DiegoCrossRefGoogle Scholar
  55. Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235PubMedCrossRefPubMedCentralGoogle Scholar
  56. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375PubMedCrossRefGoogle Scholar
  57. Miyatake M, Hayashi S (2009) Characteristics of arsenic removal from aqueous solution by Bacillus megaterium strain UM-123. Journal Environ Biotechnol 9(2):123–129Google Scholar
  58. Moghannem SA, Refaat BM, El-Sherbiny GM, El-Sayed MH, Elsehemy IA, Kalaba MH (2015) Characterization of heavy metal and antibiotic-resistant bacteria isolated from polluted localities in Egypt. Egyptian Pharm J 14(3):158CrossRefGoogle Scholar
  59. Monachese M, Burton JP, Reid G (2012) Bioremediation and tolerance of humans to heavy metals through microbial processes: a potential role for probiotics? Appl Environ Microbiol 78(18):6397–6404PubMedPubMedCentralCrossRefGoogle Scholar
  60. Morais S, Costa FG, Pereira ML (2012) Heavy metals and human health. In: Oosthuizen J (ed) Environmental health – emerging issues and practice. InTech, pp 227–246Google Scholar
  61. Morrow H (2010) Cadmium and Cadmium Alloys. Kirk-Othmer Encyclopedia of Chemical Technology:1–36Google Scholar
  62. Murthy S, Bali G, Sarangi SK (2012) Biosorption of lead by Bacillus cereus isolated from industrial effluents. Br Biotechnol J 2:73Google Scholar
  63. Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8(3):199–216CrossRefGoogle Scholar
  64. Naja GM, Volesky B (2009) Toxicity and sources of Pb , cd , hg , Cr , as , and radionuclides in the environment. In: Wang et al (eds) Handbook of advanced industrial and hazardous wastes management, pp 13–59Google Scholar
  65. Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic Bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371PubMedCrossRefGoogle Scholar
  66. Neeratanaphan L, Tanee T, Tanomtong A, Tengjaroenkul B (2016) Identifying an efficient bacterial species and its genetic erosion for arsenic bioremediation of gold mining soil. Archives Environ Protection 42(3):58–66CrossRefGoogle Scholar
  67. Neeta B, Maansi V, Harpreet SB (2016) Characterization of heavy metal (cadmium and nickle) tolerant gram negative enteric bacteria from polluted Yamuna River, Delhi. Afr J Microbiol Res 10(5):127–137CrossRefGoogle Scholar
  68. Nies DH (1999) Microbial heavy metal resistance. Appl Microbiol Biotechnol 51:730–750PubMedCrossRefGoogle Scholar
  69. Nies DH (2016) The biological chemistry of the transition metal “transportome” of Cupriavidus metallidurans. Metallomics 8:481–507PubMedCrossRefGoogle Scholar
  70. Ojuederie OB, Babalola OO (2017) Microbial and Plant-assisted bioremediation of heavy metal polluted environments: a review. Int J Environ Res Public Health 14(12):1504PubMedCentralCrossRefPubMedGoogle Scholar
  71. Okino S, Iwasaki K, Yagi O, Tanaka H (2000) Development of a biological mercury removal-recovery system. Biotechnol Lett 22:783–788CrossRefGoogle Scholar
  72. Pan J, Plant JA, Voulvoulis N, Oates CJ, Ihlenfeld C (2010) Cadmium levels in Europe: implications for human health. Environ Geochem Health 32(1):1–12PubMedCrossRefPubMedCentralGoogle Scholar
  73. Panda B, Basu B, Acharya C, Rajaram H, Apte SK (2017) Proteomic analysis reveals contrasting stress response to uranium in two nitrogen-fixing Anabaena strains, differentially tolerant to uranium. Aquat Toxicol 182:205–213PubMedCrossRefGoogle Scholar
  74. Pandey N, Bhatt R (2015) Arsenic resistance and accumulation by two bacteria isolated from a natural arsenic contaminated site. J Basic Microbiol 55:1275–1286PubMedCrossRefGoogle Scholar
  75. Patel J, Qiong Z, Michael R, McKay L, Vincent R, Xu Z (2010) Genetic engineering of Caulobacter crescentus for removal of cadmium from water. Appl Biochem Biotechnol 160(1):232–243PubMedCrossRefGoogle Scholar
  76. Pérez PL, López RA, González MN (2015) Cadmium removal at high concentration in aqueous medium: mediated by Desulfovibrio alaskensis. Int J Environ Sci Technol 12(6):1975–1986CrossRefGoogle Scholar
  77. Qing HU, Hong-yan QI, Jing-hai, ZENG, Hong-xun ZHANG (2007) Bacterial diversity in soils around a lead and zinc mineGoogle Scholar
  78. Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian journal of experimental biology, vol 41, pp 935–944Google Scholar
  79. Rajkumar M, Sandhya S, Prasad M, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30:1562–1574PubMedPubMedCentralCrossRefGoogle Scholar
  80. Ratnaike RN (2003) Acute and chronic arsenic toxicity. Postgrad Med J 79(933):391–396PubMedPubMedCentralCrossRefGoogle Scholar
  81. Reichman S (2014) Probing the plant growth-promoting and heavy metal tolerance characteristics of Bradyrhizobium japonicum CB1809. Eur J Soil Biol 63:7–13CrossRefGoogle Scholar
  82. Roane TM, Pepper IL (1999) Microbial responses to environmentally toxic cadmium. Microb Ecol 38(4):358–364PubMedCrossRefGoogle Scholar
  83. Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59CrossRefGoogle Scholar
  84. Roman Ponce B, Ramos Garza J, Arroyo Herrera I, Maldonado Hernandez J, Bahena Osorio Y, Vasquez Murrieta MS, Wang ET (2018) Mechanism of arsenic resistance in endophytic bacteria isolated from endemic plant of mine tailings and their arsenophore production. Arch Microbiol 200:883–895PubMedCrossRefGoogle Scholar
  85. Rosas I, Belmomt R, Baez AR, Villalobos-Pietrini R (1989) Some aspects of the environmental exposure to chromium residues in Mexico. Water Air Soil Pollut 48(3–4):463–475Google Scholar
  86. Sabdono A (2011) Cadmium removal by a bioreducpiun coral bacterium Pseudoalteromonas sp. strain CD15 isolated from the tissue of coral Goniastrea aspera, jepara waters. J Coastal Develop 13(2):81–91Google Scholar
  87. Sar P, Kazy S, Paul B, Sarkar A (2013) Metal bioremediation by thermophilic microorganisms. In: Satyanarayan T (ed) Thermophilic microbes in environment and industrial biotechnology: biotechnology of thermophiles. Springer Science, BerlinGoogle Scholar
  88. Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S, Balasubramanian T (2017) Bioremediation of mercury by Vibrio fluvialis screened from industrial effluents. Biomed Res Int 2017:6509648.  https://doi.org/10.1155/2017/6509648CrossRefPubMedPubMedCentralGoogle Scholar
  89. Sengor SS, Barua S, Gikas P, Ginn TR, Peyton B, Sani RK, Spycher N (2009) Influence of heavy metals on microbial growth kinetics including lag time: mathematical modeling and experimental verification. Environ Toxicol Chem 28(10):2020–2029PubMedCrossRefGoogle Scholar
  90. Shakoori FR, Aziz I, Rehman A, Shakoori AR (2010) Isolation and characterization of arsenic reducing bacteria from industrial effluents and their potential use in bioremediation of wastewater. Pak J Zool 42:331–338Google Scholar
  91. Shakya S, Pradhan B (2009) Isolation and characterization of arsenic resistant pseudomonas stutzeri asp3 for its potential in arsenic resistance and removal. J Environ Manag 95:250–255CrossRefGoogle Scholar
  92. Shakya S, Pradhan B, Smith L, Shrestha J, Tuladhar S (2012) Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. J Environ Manag 95:S250–S255CrossRefGoogle Scholar
  93. Shamim S, Rehman A (2012) Cadmium resistance and accumulation potential of Klebsiella pneumoniae strain CBL-1 isolated from industrial wastewater. Pak J Zool 44:203–208Google Scholar
  94. Silver S (1998) Genes for all metals—a bacterial view of the periodic table. The 1996 Thom Award Lecture. J Ind Microbiol Biotechnol 20:1–12PubMedCrossRefGoogle Scholar
  95. Singh PK, Rai S, Pandey S, Agrawal C, Shrivastava AK, Kumar S, Rai LC (2012) Cadmium and UV-B induced changes in proteome and some biochemical attributes of Anabaena sp. PCC 7120. Phykos 42(1):39–50Google Scholar
  96. Sinha S, Mukharjee SK (2009) Pseudomonas aeruginosa KUCD1, A Possible Candidate for Cadmium Bioremediation. Brazilian. J Microbiol 40:655–662Google Scholar
  97. Srinath T, Verma T, Ramteke PW, Garg SK (2002) Chromium (VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48:427–435CrossRefGoogle Scholar
  98. Sultana M, Hartig C, Planer-Friedrich B, Seifert J, Schlomann M (2011) Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol J 28:198–211CrossRefGoogle Scholar
  99. Tamas MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P (2014) Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomol Ther 4:252–267.  https://doi.org/10.3390/biom4010252CrossRefGoogle Scholar
  100. Tariq SR, Shah MH, Shaheen N, Jaffar M, Khalique A (2008) Statistical source identification of metals in ground water exposed to industrial contamination. Environ Monit 138:159–165CrossRefGoogle Scholar
  101. Teitzel GM, Parsek MR (2003) Heavy-metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tiwari M, Bajpai S, Dewangan U (2015) An analytical study of heavy metal concentration in soil of an industrial region of Chhattisgarh, Central India. Int J Sci Res PublGoogle Scholar
  103. Tsuruta T (2004) Cell-associated adsorption of thorium or uranium from aqueous system using various microorganisms. Water Air Soil Pollut 159(1):35–47CrossRefGoogle Scholar
  104. Verma N, Sharma R (2017) Bioremediation of toxic heavy metals: a patent review. Recent Pat Biotechnol 11(3)Google Scholar
  105. Zubair M, Shakir M, Ali Q, Rani N, Fatima N, Farooq S et al (2016) Rhizobacteria and phytoremediation of heavy metals. Environ Technol Rev 5:112–119CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Ravindra Soni
    • 1
  • Biplab Dash
    • 1
  • Prahalad Kumar
    • 1
  • Udit Nandan Mishra
    • 2
  • Reeta Goel
    • 3
  1. 1.Department of Agricultural Microbiology, College of AgricultureIndira Gandhi Krishi VishwavidyalayaRaipurIndia
  2. 2.Department of Biochemistry & Agricultural Chemistry, College of AgricultureAssam Agricultural UniversityJorhatIndia
  3. 3.Department of Microbiology, College of Basic Sciences and HumanitiesG. B. Pant University of Agriculture and TechnologyPantnagarIndia

Personalised recommendations