Microbes-Mediated Nutrient Use Efficiency in Pulse Crops

  • Sudheer K. Yadav
  • Ratna Prabha
  • Vivek Singh
  • Raina Bajpai
  • Basavaraj Teli
  • Md. Mahtab Rashid
  • Birinchi K. Sarma
  • Dhananjaya Pratap Singh


Legumes are the major crops used in crop rotation practices to maintain soil fertility. Soil fertility is maintained mainly by microorganisms associated with roots either symbiotically or asymbiotically. Microbes have capability to fix atmospheric nitrogen (N2) and enhance nutrient use efficiency by using a number of strategies like phosphate solubilization, potassium solubilization, mineral absorption, etc. Currently, use of microbial consortium (symbiotic as well as free-living) to increase nutrition use efficiency and activation of defense systems of plants is gaining importance. Microorganisms are eco-friendly, and their use is one of the best alternates of chemical fertilizers and pesticides. Additionally, efforts are also being made to develop transgenic plants for increasing nutrient use efficiency. These transgenes are mostly of microbial origin. The present review focuses on enhancement of nutrient use efficiency of plants by using either individual microbe or microbes in consortium mode. The review also discusses the strategies adopted by microbes to enhance use of nutrients from soil.


Nutrient use efficiency Microorganisms Biofertilizers Consortia Pulse crops 



SKY is grateful to the Indian Council of Medical Research, New Delhi, India, for financial assistance [Grant 3/1/3/JRF-2012/HRD-66(80689)] as the work is related to Ph.D. RP is thankful to DST for financial support under DST-Women Scientist Scheme-B (KIRAN Program) (Grant No. DST/WOS-B/2017/67-AAS).


  1. Abd-El-Khair H, Khalifa RKM, Haggag KHE (2010) Effect of Trichoderma species on damping off diseases incidence, some plant enzymes activity and nutritional status of bean plants. J Am Sci 6(9):486–497Google Scholar
  2. Acharya S, Bera S, Gupta K, Basumatary S, Bera S, Ahmed M (2012) Bamboo cultivation in Garo Hills of Meghalaya, North East India: a potential agroforestry system to protect environment. Biol Sci Eng 3:195Google Scholar
  3. Akhtar MS, Siddiqui ZA (2007) Effects of Glomus fasciculatum and Rhizobium sp. on the growth and root-rot disease complex of chickpea. Arch Phytopathol Plant Protect 40:37–43CrossRefGoogle Scholar
  4. Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl Environ Microbiol 65:2926–2933PubMedPubMedCentralGoogle Scholar
  5. Argaw A (2012) Evaluation of co-inoculation of Bradyrhizobium japonicum and phosphate solubilizing Pseudomonas spp. effect on soybean (Glycine max L. (Merr.)) in Assossa area. J Agric Sci Technol 14:213–224Google Scholar
  6. Badar R, Qureshi SA (2012) Comparative effect of Trichoderma hamatum and host-specific Rhizobium species on growth of Vigna mungo. J Appl Pharm Sci 02(04):128–132CrossRefGoogle Scholar
  7. Bai Y, Zhou X, Smith DL (2003) Enhanced soybean plant growth resulting from co-inoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1781CrossRefGoogle Scholar
  8. Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bambara S, Ndakidemi PA (2010) Changes in selected soil chemical properties in the rhizosphere of Phaseolus vulgaris L. supplied with Rhizobium inoculants, molybdenum and lime. Sci Res Essays 5:679–684Google Scholar
  10. Bardas GA, Lagopodi AL, Kadoglidou K, Tzavella-Klonari K (2009) Biological control of three Colletotrichum lindemuthianum races using Pseudomonas chlororaphis PCL1391 and Pseudomonas fluorescens WCS365. Biol Control 2:139–145CrossRefGoogle Scholar
  11. Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and Rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15(2):159–168CrossRefGoogle Scholar
  12. Burns TA Jr, Bishop PE, Israel DW (1981) Enhanced nodulation of leguminous plant roots by mixed cultures of Azotobacter vinelandi and damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871Google Scholar
  13. Chandra SN, Puneet SC, Sangeeta MD, Karishma S, Ajit V, William JS (2010) Tripartite interactions among Paenibacillus lentimorbus NRRL B-30488, Piriformospora indica DSM 11827, and Cicer arietinum L. World J Microbiol Biotechnol 26:1393–1399CrossRefGoogle Scholar
  14. Chanway CP, Hynes RK, Nelson LM (1989) Plant growth promoting rhizobacteria: effects on growth and nitrogen fixation of lentil (Lens esculenta Moench) and pea (Pisum sativum L.). Soil Biol Biochem 21:511–517CrossRefGoogle Scholar
  15. Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Crit Rev Plant Sci 34(1–3):4–16CrossRefGoogle Scholar
  16. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  17. Dorosinsky LM, Kadyrob AA (1975) Effect of inoculation of nitrogen fixation by chickpea, its crop and content of protein. Mikrobiologiia 44:1103–1106Google Scholar
  18. Egamberdieva D, Jabborova D, Wirth S (2013) Alleviation of salt stress in legumes by co-inoculation with Pseudomonas and Rhizobium. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer India, New Delhi, pp 291–303CrossRefGoogle Scholar
  19. Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280PubMedPubMedCentralCrossRefGoogle Scholar
  20. FAOSTAT (2010) Food and agriculture organization of the United NationsGoogle Scholar
  21. Farzaneh M, Wichmann S, Vierheilig H, Kaul HP (2009) The effects of arbuscular mycorrhiza and nitrogen nutrition on growth of chickpea and barley. Pflanzenbauwissenschaften 13:15–22Google Scholar
  22. Farzaneh M, Vierheilig H, Lössl A, Kaul HP (2011) Arbuscular mycorrhiza enhances nutrient uptake in chickpea. Plant Soil Environ 57(10):465–470CrossRefGoogle Scholar
  23. Fattah OA (2013) Effect of mycorrhiza and phosphorus on micronutrients uptake by soybean plant grown in acid soil. Int J Agron Plant Prod 4(3):429–437Google Scholar
  24. Geetha R, Sing FJ, Desai A, Archana G (2008) Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresour Technol 99:4544–4550CrossRefGoogle Scholar
  25. Gourley CJP, Allan DL, Russelle MP (1994) Plant nutrient efficiency: a comparison of definitions and suggested improvements. Plant Soil 158:29–37CrossRefGoogle Scholar
  26. Graham P, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res 53:131–146CrossRefGoogle Scholar
  27. Gruodien J, Zvironaite V (1971) Effect of IAA on growth and synthesis of N compounds in Lucerne. Luk TSR Aukstuja Mosklo Darbai Biologia 17:77–87Google Scholar
  28. Guo H, He X, Li Y (2012) Spatial distribution of arbuscular mycorrhiza and glomalin in the rhizosphere of Caragana korshinskii Kom in the Otindag sandy land, China. Afr J Microbiol Res 6:5745–5753Google Scholar
  29. Halder M, Dhar PP, Mujib ASM, Khan MS, Joardar JC, Akhter S (2015) Effect of arbuscular mycorrhiza fungi inoculation on growth and uptake of mineral nutrition in Ipomoea aquatica. Curr World Environ 10(1):67–75CrossRefGoogle Scholar
  30. Kan FL, Chen ZY, Wang ET, Tian CF, Sui XH, Chen WX (2007) Characterization of symbiotic and endophytic bacteria isolated from root nodules of herbaceous legumes grown in Qinghai-Tibet plateau and in other zones of China. Arch Microbiol 188:103–115PubMedCrossRefPubMedCentralGoogle Scholar
  31. Khan MS, Zaidi A, Wani PA (2007) Role of phosphate-solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27(1):29–43CrossRefGoogle Scholar
  32. Kumar M, Singh DP, Prabha R, Sharma AK (2015) Role of cyanobacteria in nutrient cycle and use efficiency in the soil. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Delhi, pp 163–171CrossRefGoogle Scholar
  33. Li JH, Wang ET, Chen WF, Chen WX (2008) Genetic diversity and potential for promotion of plant growth detected in nodule endophytic bacteria of soybean grown in Heilongjiang province of China. Soil Biol Biochem 40:238–246CrossRefGoogle Scholar
  34. Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556CrossRefPubMedPubMedCentralGoogle Scholar
  35. Martinez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319CrossRefGoogle Scholar
  36. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  37. Mehetre ST, Mukherjee PK (2015) Trichoderma improves nutrient use efficiency in crop plants. In: Rakshit A, Singh HB, Sen A (eds) Nutrient use efficiency: from basics to advances. Springer India, New Delhi, pp 173–180CrossRefGoogle Scholar
  38. Meshram S, Patel JS, Yadav SK, Kumar G, Singh DP, Singh HB, Sarma BK (2019) Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. J Basic Microbiol 59(1):74–86PubMedCrossRefPubMedCentralGoogle Scholar
  39. Mia MB, Shamsuddin Z (2013) Rhizobium as a crop enhancer and biofertilizer for increased cereal production. Afr J Biotechnol 9:6001–6009Google Scholar
  40. Miller RM, Jastrow JD (1994) Vesicular arbuscular mycorrhizae and biogeochemical cycling. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, The American Phytopathological Society, St. Paul, pp 189–212Google Scholar
  41. Mmbaga GW, Mtei KM, Ndakidemi PA (2014) Extrapolations on the use of Rhizobium inoculants supplemented with phosphorus (P) and potassium (K) on growth and nutrition of legumes. Agric Sci 5:1207–1226Google Scholar
  42. Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. J Agric Biol Sci 7:307–316Google Scholar
  43. Pandey PK, Yadav SK, Singh A, Sarma BK, Mishra A, Singh HB (2012) Cross-species alleviation of biotic and abiotic stresses by the endophyte Pseudomonas aeruginosa PW09. J Phytopathol 160(10):532–539CrossRefGoogle Scholar
  44. Parmar N, Dadarwal KR (1999) Stimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteria. J Appl Microbiol 86:36–64CrossRefGoogle Scholar
  45. Patel JS, Singh A, Singh HB, Sarma BK (2015) Plant genotype, microbial recruitment and nutritional security. Front Plant Sci 6:608PubMedPubMedCentralCrossRefGoogle Scholar
  46. Peix A, Ramirez-Bahena MH, Velazquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34(1–3):17–42CrossRefGoogle Scholar
  47. Qureshi MA, Shakir MA, Naveed M, Ahmad MJ (2009) Growth and yield response of chickpea to co-inoculation with Mesorhizobium ciceri and Bacillus megaterium. J Anim Plant Sci 19(4):205–211Google Scholar
  48. Rees DC, Akif Tezcan F, Haynes CA, Walton MY, Andrade S, Einsle O, Howard JB (2005) Structural basis of biological nitrogen fixation. Philos Transact A Math Phys Eng Sci 363:971–984CrossRefGoogle Scholar
  49. Reino JL, Guerrero RF, Hernández-Galán R, Collado IG (2008) Secondary metabolites from species of the biocontrol agent Trichoderma. Phytochem Rev 7(1):89–123CrossRefGoogle Scholar
  50. Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321(1–2):305–339CrossRefGoogle Scholar
  51. Rokhzadi A, Asgharzadeh A, Darvish F, Nour-Mohammadi G, Majidi E (2008) Influence of plant growth-promoting rhizobacteria on dry matter accumulation and yield of chickpea (Cicer arietinum L.) under field conditions. Am Eurasian J Agric Environ Sci 3(2):253–257Google Scholar
  52. Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Crit Rev Plant Sci 34(1–3):2–3CrossRefGoogle Scholar
  53. Rudresh DL, Shivaprakash MK, Prasad RD (2005) Effect of combined application of Rhizobium, phosphate solubilizing bacterium and Trichoderma spp. on growth, nutrient uptake and yield of chickpea (Cicer aritenium L.). Appl Soil Ecol 28(2):139–146CrossRefGoogle Scholar
  54. Sandeep AR, Joseph S, Jisha MS (2008) Yield and nutrient uptake of soybean (Glycine max (L.) Merr) as influenced by phosphate solubilizing microorganisms. World J Agric Sci 4:835–838Google Scholar
  55. Sarkar A, Patel JS, Yadav S, Sarma BK, Srivastava JS, Singh HB (2014) Studies on rhizosphere-bacteria mediated biotic and abiotic stress tolerance in chickpea (Cicer arietinum L.). Vegetos 27(1):158–169Google Scholar
  56. Sarma BK, Singh DP, Mehta S, Singh HB, Singh UP (2002) Plant growth-promoting rhizobacteria-elicited alterations in phenolic profile of chickpea (Cicer arietinum) infected by Sclerotium rolfsii. J Phytopathol 150:277–282CrossRefGoogle Scholar
  57. Sarma BK, Yadav SK, Singh DP, Singh HB (2012) Rhizobacteria mediated induced systemic tolerance in plants: prospects for abiotic stress management. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin/Heidelberg, pp 225–238CrossRefGoogle Scholar
  58. Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 87:25–33CrossRefGoogle Scholar
  59. Shakeri J, Foster HA (2007) Proteolytic activity and antibiotic production by Trichoderma harzianum in relation to pathogenicity to insects. Enzym Microb Technol 40(4):961–968CrossRefGoogle Scholar
  60. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2(1):587PubMedPubMedCentralCrossRefGoogle Scholar
  61. Sharma N, Yadav K, Aggarwal A (2016) Growth response of two Phaseolus mungo L. cultivars induced by arbuscular mycorrhizal fungi and Trichoderma viride. Int J Agron 2016:1–6CrossRefGoogle Scholar
  62. Shen J, Li C, Mi G, Li L, Yuan L, Jiang R, Zhang F (2012) Maximizing root/rhizosphere efficiency to improve crop productivity and nutrient use efficiency in intensive agriculture of China. J Exp Bot 64(5):1181–1192PubMedCrossRefGoogle Scholar
  63. Singh LP, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6(2):175–191PubMedPubMedCentralCrossRefGoogle Scholar
  64. Singh V, Upadhyay RS, Sarma BK, Singh HB (2016a) Seed bio-priming with Trichoderma asperellum effectively modulate plant growth promotion in pea. Int J Agric Environ Biotechnol 9(3):361–365CrossRefGoogle Scholar
  65. Singh V, Upadhyay RS, Sarma BK, Singh HB (2016b) Trichoderma asperellum spore dose depended modulation of plant growth in vegetable crops. Microbiol Res 193:74–86PubMedCrossRefGoogle Scholar
  66. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San DiegoGoogle Scholar
  67. Snoeijers SS, Garcia AP, Joosten MHAJ, De Wit PJGM (2000) The effect of nitrogen on disease development and gene expression in bacterial and fungal plant pathogen. Eur J Plant Pathol 106:493–506CrossRefGoogle Scholar
  68. Srinivasan PS, Gopal KS (1977) Effect of plantofix and NAA formulation on groundnut var TMU-7. Curr Sci 46:119–120Google Scholar
  69. Suranjana AR, Manas KR (2009) Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen J Med Sci 2:57–63Google Scholar
  70. Tagore GS, Namdeo SL, Sharma SK, Kumar N (2013) Effect of Rhizobium and phosphate solubilizing bacterial inoculants on symbiotic traits, nodule leghemoglobin, and yield of chickpea genotypes. Int J Agron 2013:1–8CrossRefGoogle Scholar
  71. Tairo EV, Ndakidemi PA (2013) Possible benefits of rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. Am J Res Commun 1(12):532–556Google Scholar
  72. Tanimoto E (2005) Regulation of root growth by plant hormones: roles for auxin and gibberellin. Crit Rev Plant Sci 24:249–265CrossRefGoogle Scholar
  73. Tilak KVBR, Ranganayaki N, Manoharachari C (2006) Synergistic effects of plant growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeon pea (Cajanus cajan). Eur J Soil Sci 57(1):67–71CrossRefGoogle Scholar
  74. Tonin C, Vandenkoornhuyse P, Joner EJ, Straczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168CrossRefGoogle Scholar
  75. Vadassery J, Oelmüller R (2009) Calcium signaling in pathogenic and beneficial plant microbe interactions. Plant Signal Behav 4:1024–1027PubMedPubMedCentralCrossRefGoogle Scholar
  76. Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon. Biol Fertil Soils 30:460–468CrossRefGoogle Scholar
  77. Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277Google Scholar
  78. Verma JP, Yadav J, Tiwari KN (2010) Application of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.). Int J Agric Res 5:148–156CrossRefGoogle Scholar
  79. Wani PA, Khan MS, Zaidi A (2007) Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J Plant Nutr Soil Sci 170:283–287CrossRefGoogle Scholar
  80. Yadav A, Aggarwal A (2014) Effect of dual inoculation of AM fungi and pseudomonas with phosphorus fertilizer rates on growth performance, nutrient uptake and yield of soybean. Researcher 6:5–13Google Scholar
  81. Yadav SK, Dave A, Sarkar A, Singh HB, Sarma BK (2013) Co-inoculated biopriming with Trichoderma, Pseudomonas and Rhizobium improves crop growth in Cicer arietinum and Phaseolus vulgaris. Int J Agric Environ Biotechnol 6(2):255–259Google Scholar
  82. Yadav SK, Singh S, Singh HB, Sarma BK (2017) Compatible rhizosphere-competent microbial consortium adds value to the nutritional quality in edible parts of chickpea. J Agric Food Chem 65(30):6122–6130PubMedCrossRefPubMedCentralGoogle Scholar
  83. Yahalom E, Okon Y, Dovrat A (1988) Early nodulation in legumes inoculated with Azospirillum and Rhizobium. Symbiosis 6:69–80Google Scholar
  84. Yan YL, Yang J, Dou YT, Chen M, Ping SZ, Peng JP, Lu W, Zhang W, Yao ZY, Li HQ, Liu W, He S, Geng LZ, Zhang XB, Yang F, Yu HY, Zhan YH, Li DH, Lin ZL, Wang YP, Elmerich C, Lin M, Jin Q (2010) Nitrogen fixation island and rhizosphere competence traits in the genome of root-associated Pseudomonas stutzeri A1501. Proc Natl Acad Sci U S A 21:7564–7569Google Scholar
  85. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedPubMedCentralCrossRefGoogle Scholar
  86. Yaseen T, Burni T, Hussain F (2011) Effect of arbuscular mycorrhizal inoculation on nutrient uptake, growth and productivity of cowpea (Vigna unguiculata) varieties. Afr J Biotechnol 10(43):8593–8598CrossRefGoogle Scholar
  87. Yuming B, Xiaomin Z, Smith DL (2003) Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci 43:1774–1778CrossRefGoogle Scholar
  88. Zakhia F, Jeder H, Willems A, Gillis M, Dreyfus B, De Lajudie P (2006) Diverse bacteria associated with root nodules of spontaneous legumes in Tunisia and first report for nifH-like gene within the genera Microbacterium and Starkeya. Microb Ecol 51:375–393PubMedCrossRefPubMedCentralGoogle Scholar
  89. Zhao LF, Xu YJ, Ma ZQ, Deng ZS, Shan CJ, Wei GH (2013) Colonization and plant growth promoting characterization of endophytic Pseudomonas chlororaphis strain Zong1 isolated from Sophora alopecuroides root nodules. Braz J Microbiol 44(2):623–631PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sudheer K. Yadav
    • 1
    • 2
  • Ratna Prabha
    • 2
  • Vivek Singh
    • 1
  • Raina Bajpai
    • 3
  • Basavaraj Teli
    • 3
  • Md. Mahtab Rashid
    • 3
  • Birinchi K. Sarma
    • 3
  • Dhananjaya Pratap Singh
    • 2
  1. 1.Department of Botany, Institute of ScienceBanaras Hindu UniversityVaranasiIndia
  2. 2.ICAR-National Bureau of Agriculturally Important MicroorganismsMaunath BhanjanIndia
  3. 3.Department of Mycology and Plant Pathology, Institute of Agricultural SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations