Advertisement

Microbial Products: Protein, Enzyme, Secondary Metabolites and Chemicals

  • Shweta Ranghar
  • Shruti Agrawal
  • Pavan Kumar Agrawal
Chapter

Abstract

Microbial products are described as products derived from microbes. Microbial products have been contributing in almost every sphere of human life. These products have proved their importance and value in field of food and feed sector, agriculture, healthcare, and many other industries. Microbes have the ability to grow in wide variety of substrate on large scale to produce many valuable primary metabolites such as amino acids, enzymes, vitamins, organic acids, alcohol and bioactive metabolites such as antibiotics, alkaloids, peptides, growth factor, etc. This chapter describes the importance of microorganism for production of protein, enzymes, secondary metabolites and chemicals.

Keywords

Microbial products Protein Enzyme Secondary metabolites and chemicals 

Notes

Acknowledgement

We gratefully acknowledge TEQIP-III and G. B. Pant Institute of Engineering and Technology, Pauri Garhwal, for financial support and providing other facilities.

References

  1. Adebule AP, Aderiye BI, Adebayo AA (2018) Improving bioelectricity generation of microbial fuel cell (MFC) with mediators using kitchen waste as substrate. Ann Appl Microbiol Biotechnol 2(1):1008Google Scholar
  2. Adedayo MR, Ajiboye EA, Akintunde JK, Odaibo A (2011) SCP: as nutritional enhancer. J Microbiol 2(5):396–409Google Scholar
  3. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4(1):117–139Google Scholar
  4. Aguilar-Toalá JE, Santiago-López L, Peres CM, Peres C, Garcia HS, Vallejo-Cordoba B, González-Córdova AF, Hernández-Mendoza A (2016) Assessment of multifunctional activity of bioactive peptides derived from fermented milk by specific Lactobacillus plantarum strains. J Dairy Sci 100:65–75PubMedCrossRefGoogle Scholar
  5. Agyei D, Ongkudon CM, Wei CY, Chan AS, Danquah MK (2016) Bioprocess challenges to the isolation and purification of bioactive peptides. Food Bioprod Process 98:244–256CrossRefGoogle Scholar
  6. Ali S, Mushtaq J, Nazir F, Sarfraz H (2017) Production and processing of single cell protein: a review. Eur J Pharm Med Res 4(7):86–94Google Scholar
  7. Amrhein N, Schab J, Steinrücken HC (1980) The mode of action of the herbicide glyphosate.The. Sci Nat 67(7):356–357CrossRefGoogle Scholar
  8. Anbu P, Gopinath SCB, Cihan AC, Chaulagain BP (2013) Microbial enzymes and their applications in industries and medicine. BioMed Res Int 2013: 204014, 2 p,Google Scholar
  9. Anupama PR (2000) Value-added food: single cell protein. Biotech Adv 18:459–479CrossRefGoogle Scholar
  10. Aravindan R, Anbumathi P, Viruthagiri T (2007) Lipase applications in food industry. Indian J Biotechnol 6:141–158Google Scholar
  11. Asadollahzadeh M, Ghasemian A, Saraeian A, Resalati H, Taherzadeh MJ (2018) Production of fungal biomass protein by filamentous fungi cultivation on liquid waste streams from pulping process. Bioresources 13(3):5013–5031Google Scholar
  12. Babizhayev MA (2006) Biological activities of the natural imidazole containing peptidomimetics n-acetylcarnosine, carcinine and Lcarnosine in ophthalmic and skin care products. Life Sci 8(20):2343–2357CrossRefGoogle Scholar
  13. Bamberg JH (2000) British petroleum and global oil. Int J Curr Microbiol Appl Sci 6:445–478Google Scholar
  14. Berdy J (2012) Thoughts and facts about antibiotics: where we are now and where we are heading. Antibiot 65:385–395CrossRefGoogle Scholar
  15. Bhardwaj A, Agrawal PK (2014) Fungal endophytes: as a store house of bioactive compound. World J Pharm Pharmaceut Sci 3(9):228–237Google Scholar
  16. Bhardwaj A, Sharma D, Jodan N, Agrawal PK (2015) Antimicrobial and phytochemical screening of endophytic Fungi isolated from spikes of Pinus rouxburghii. Arch Clin Microbiol 6(3):1–9Google Scholar
  17. Bills GF, González-Menéndez V, Martín J, Platas G, Fournier J, Peršoh D, Stadler M (2012) Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a pantropical insecticide-producing endophyte. PLoS One 7(10):e46687PubMedPubMedCentralCrossRefGoogle Scholar
  18. Binod P, Palkhiwala P, Gaikaiwari R (2013) Industrial enzymes: present status and future perspectives for India: present scenario and perspectives. J Sci Ind Res 72:271–286Google Scholar
  19. Bomgardner MM (2012) The sweet smell of microbes. Chem Eng News 90(29):25–29Google Scholar
  20. Borel JF, Feurer C, Gabler HU, Stahelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Actions 6(4):468–475PubMedCrossRefGoogle Scholar
  21. Bozzetti F, Bozzetti V (2012) Is the intravenous supplementation of amino acid to cancer patients adequate? A critical appraisal of literature. Clin Nutr 32(1):142–146PubMedCrossRefGoogle Scholar
  22. Cech TR, Bass BL (1986) Biological catalysis by RNA. Annu Rev Biochem 55:599–629PubMedCrossRefGoogle Scholar
  23. Cipriano M (2006) Large-scale production of microorganisms. In: Fleming D, Hunt D (eds) Biological safety. ASM Press, Washington, DC, pp 561–577CrossRefGoogle Scholar
  24. Coley WB (1891) Contribution to the knowledge of sarcoma. Ann Surg 14:199–220PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830(6):3670–3695PubMedPubMedCentralCrossRefGoogle Scholar
  26. de Souza PM and Pérola de Oliveira Magalhaes (2010) Application of microbial α-amylase in industry-a review. Braz J Microbiol 41(4): 850–861Google Scholar
  27. de Souza PM, Magalhães PO (2010) Application of microbial α-amylase in industry – a review. Braz J Microbiol 41(4):850–861PubMedPubMedCentralCrossRefGoogle Scholar
  28. Demain AL, Fang A (2000) The natural functions of secondary metabolites. Adv Biochem Eng Biotechnol 69(1):1–39PubMedGoogle Scholar
  29. D’Este M, Alvarado-Morales M, Angelidaki I (2018) Amino acids production focusing on fermentation technologies -A review. Biotechnol Adv 36(1):14–25PubMedCrossRefGoogle Scholar
  30. Dhanasekaran D, Lawanya SS, Saha NT, Panneerselvam A (2011) Production of single cell protein from pineapple waste using yeast. Innovat Roman Food Biotechnol 8:26–32Google Scholar
  31. Dresch P, D’Aguanno MN, Rosam K, Grienke U, Rollinger JM, Peintner U (2015) Fungal strain matters: colony growth and bioactivity of the European medicinal polypores Fomes fomentarius, Fomitopsis pinicola and Piptoporus betulinus. AMB Express 5(4):1–14Google Scholar
  32. Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38(8):873–890PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dutta D, Puzari KC, Gogoi R, Dutta P (2014) Endophytes: exploitation as a tool in plant protection. Braz Arch Biol Technol 57:621–629CrossRefGoogle Scholar
  34. Galante YM, Monteverdi R, Inama S, Caldini C, De Conti A, Lavelli V et al (1993) New applications of enzymes in wine making and olive oil production. Italian Biochem Soc Trans 4:34–34Google Scholar
  35. Ghimire R, Norton JB, Stahl PD, Norton U (2014) Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems. PLoS One 9(8):e103901PubMedPubMedCentralCrossRefGoogle Scholar
  36. Ginell S, Lessinger L, Berman HM (1988) The crystal and molecular structure of the anticancer drug actinomycin D-some explanations for its unusual properties. Biopolymers 27:843–864PubMedCrossRefGoogle Scholar
  37. Goldberg I (1985) Organisms and Substrates. In: Single Cell Protein. Biotechnology Monographs, vol 1. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  38. Gomashe AV, Pounikar MA, Gulhane PA (2014) Liquid whey: a potential substrate for single cell protein production from Bacillus subtilis NCIM 2010. Int J Life Sci 2(2):119–123Google Scholar
  39. Gouda S, Das G, Sen SK, Shin HS, Patra JK (2016) Endophytes: a treasure house of bioactive compounds of medicinal importance. Front Microbiol 7:1538PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gour S, Mathur N, Singh A, Bhatnagar P (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4(9):251–262Google Scholar
  41. Gunlu A, Gunlu N (2014) Taste activity value, free amino acid content and proximate composition of Mountain trout (Salmo trutta macrostigma Dumeril, 1858) muscles. Iran J Fish Sci 13(1):58–72Google Scholar
  42. Gupta C, Prakash D, Gupta S (2015) A biotechnological approach to microbial based perfumes and flavours. J Microbiol Exp 2(1):1–8Google Scholar
  43. Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int Article ID 329121, pp 18.Google Scholar
  44. Huang JX, Zhang J, Zhang XR, Zhang K, Zhang X et al (2014) Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol 52:1237–1243PubMedCrossRefGoogle Scholar
  45. James J, Simpson BK, Marshall MR (1996) Application of enzymes in food processing. Crit Rev Food Sci Nutr 36:437–463PubMedCrossRefGoogle Scholar
  46. Jarl K (1969) Symba yeast process. Food Technol 23:1009–1012Google Scholar
  47. Kamo T, Imura Y, Hagio T, Makabe H, Shibata H, Hirota M (2004) Anti-inflammatory cyathane diterpenoids from Sarcodon scabrosus. Biosci Biotechnol Biochem 68(6):1362–1365PubMedCrossRefGoogle Scholar
  48. Kinoshita S (1985) Glutamic acid bacteria. In: Demain AL, Solomon NA (eds) Biology of industrial microorganisms. Benjamin/Cummings, Menlo Park, pp 115–142Google Scholar
  49. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351PubMedCrossRefGoogle Scholar
  50. Knight A, Leitsberger M (2016) Vegetarian versus meat-based diets for companion animals. Animals 6(57):1–20Google Scholar
  51. Kulanthaivel P, Hallock YF, Boros C, Hamilton SM, Janzen WP, Ballas LM, Loomis CR, Jiang JB, Katz B, Steiner JR, Clardy J (1993) Balanol: a novel and potent inhibitor of protein kinase C from the fungus Verticillium balanoides. J Am Chem Soc 115:6452–6453CrossRefGoogle Scholar
  52. Kumar S (2015) Role of enzymes in fruit juice processing and its quality enhancement. Adv Appl Sci Res 6:114–124Google Scholar
  53. Ledesma-Amaro R, Santos MA, Jiménez A, Revuelta JL (2013) Microbial production of vitamins: in microbial production of food ingredients, enzymes and nutraceuticals. Woodhead Publishing Series in Food Science, Technology and Nutrition, pp 571–594CrossRefGoogle Scholar
  54. Lee JC, Yang X, Schwartz M, Strobel G, Clardy J (1995) The relationship between an endangered North American tree and an endophytic fungus. Chem Biol 2:721–727PubMedCrossRefGoogle Scholar
  55. Lee DS, Ko W, Quang TH, Kim KS, Sohn JH, Jang JH, Ahn JS, Kim YC, Oh H (2013) Penicillinolide A: a new anti-inflammatory metabolite from the marine fungus Penicillium sp. SF-5292.Mar. Drugs 11(11):4510–4526Google Scholar
  56. Leekha S, Terrell CL, Edson RS (2011) General principles of antimicrobial therapy. Mayo Clin Proc 86(2):156–167PubMedPubMedCentralCrossRefGoogle Scholar
  57. Leuchtenberger W, Huthmacher K, Karlheinz Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69:1–8PubMedCrossRefGoogle Scholar
  58. Li JY, Strobel GA, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 142:2223–2226PubMedCrossRefGoogle Scholar
  59. Li GH, Yu ZF, Li X, Wang XB, Zheng LJ, Zhang KQ (2007) Nematicidal metabolites produced by the endophytic fungus Geotrichum sp. AL4. Chem Biodivers 4(7):1520–1524PubMedCrossRefGoogle Scholar
  60. Li P, Zheng Y, Chen X (2017) Drugs for autoimmune inflammatory diseases: from small molecule compounds to anti-TNF biologics. Front Pharmacol 8(460):1–12Google Scholar
  61. Liebl W (2005) Corynebacterium taxonomy. In: Eggeling L, Bott, M. (Eds.), Handbook of Corynebacterium glutamicum. Taylor & Francis, Boca Raton, pp. 9–34CrossRefGoogle Scholar
  62. Liu Q, Wu M, Zhang B, Shrestha P, Petrie J, Green AG, Singh SP (2017) Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACPsynthase II (KASII). Plant Biotechnol 15(1):132–143CrossRefGoogle Scholar
  63. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126PubMedPubMedCentralCrossRefGoogle Scholar
  64. Mahmood ZA (2015) Microbial amino acids production: microbial biotechnology, progress and trends. CRC Press, Tayler & Francis Group, USA.  https://doi.org/10.13140/2.1.1511.504010.13140/2.1.1511.5040
  65. Mane P, Tale V (2015) Overview of microbial therapeutic enzymes. Int J Curr Microbiol App 4(4):17–26Google Scholar
  66. Manivasagana P, Venkatesana J, Sivakumar K, Kima SK (2014) Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res 169:262–278CrossRefGoogle Scholar
  67. Matassa S, Boon N, Pikaar I, Verstraete W (2016) Microbial protein: future sustainable food supply route with low environmental footprint. Microb Biotechnol 9(5):568–575PubMedPubMedCentralCrossRefGoogle Scholar
  68. Maurya DP, Singla A, Negi S (2015) An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech 5(5):597–609PubMedPubMedCentralCrossRefGoogle Scholar
  69. McCarthy EF (2006) The toxins of William B. Coley and the treatment of bone and soft tissue sarcomas. Iowa Orthop 26:154–158Google Scholar
  70. Moulin G, Malige B, Galzy P (1983) Balanced flora of an industrial fermenter: production of yeast from whey. J Dairy Sci 66(1):21–28CrossRefGoogle Scholar
  71. Murphy MP (2009) How mitochondria produce reactive oxygen species? Biochemist 417(Pt 1):1–13Google Scholar
  72. Nakayama K (1985) Lysine. In: Moo-Young M, Blanch HW, Drews G, Wang DIC (eds) Comprehensive biotechnology, vol 3. Pergamon Press, Oxford, pp 607–620Google Scholar
  73. Nasseri AT, Rasoul-Amini S, Moromvat MH, Ghasemi Y (2011a) Production of single cell protein from fruits waste. Am J Food Technol 6(2):103–116CrossRefGoogle Scholar
  74. Nasseri AT, Rasoul-Amini S, Morowvat MH, Ghasemi Y (2011b) Single cell protein: production and process. Am J Food Tech 6:103–116CrossRefGoogle Scholar
  75. Ncube B, Staden JV (2015) Tilting plant metabolism for improved metabolite biosynthesis and enhanced human benefit. Molecules 20(7):12698–12731PubMedPubMedCentralCrossRefGoogle Scholar
  76. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomol Ther 3:597–611Google Scholar
  77. Noor R, Islam Z, Munshi SK, Rahman F (2013) Influence of temperature on Escherichia coli growth in different culture. Media 7:899–904Google Scholar
  78. Osbourn A (2010) Gene clusters for secondary metabolic pathways: an emerging theme in plant biology. Plant Physiol 154(2):531–535PubMedPubMedCentralCrossRefGoogle Scholar
  79. Oura E (1983) Biomass from carbohydrates. In: Rehm HJ, Reed G (eds) Biotechnology, vol 3. Verlag Chemie, Weinheim, p 3Google Scholar
  80. Pandey A, Selvakumar P, Soccol CR, Nigam P (1999) Solid-state fermentation for the production of industrial enzymes. Curr Sci 77:149–162Google Scholar
  81. Park JH, Lee SY (2010) Fermentative production of branched chain amino acids: a focus on metabolic engineering. Appl Microbiol Biotechnol 85(3):491–506PubMedCrossRefGoogle Scholar
  82. Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648PubMedCrossRefGoogle Scholar
  83. Qureshi SA, Ding V, Li Z, Szalkowski D, Biazzo-Ashnault DE, Xie D et al (2000) Activation of insulin signal transduction pathway and anti-diabetic activity of small molecule insulin receptor activators. J Biol Chem 275(47):36590–36595PubMedCrossRefGoogle Scholar
  84. Rainsford KD (2007) Anti-inflammatory drugs in the 21st century. Subcell Biochem 42:3–27PubMedCrossRefGoogle Scholar
  85. Rakesh KN, Junaid S, Dileep N, Kekuda P (2013) Antibacterial and antioxidant activities of streptomyces species SRDP-H03 isolated from soil of Hosudi, Karnataka. India J Drug Deliv Ther 3(4):47–53Google Scholar
  86. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK et al (2018) Applications of microbial enzymes in food industry. Food Technol Biotechnol 56(1):16–30PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rudravaram R, Chandel AK, Rao LV, Hui YZ, Ravindra P (2009) Bio (Single Cell) protein: issues of production, toxins and commercialisation status. In: Ashworth GS, Azevedo P (eds) Agricultural wastes. Hauppage, New York, pp 129–153Google Scholar
  88. Ruiz B, Chávez A, Forero A, García-Huante Y et al (2010) Production of microbial secondary metabolites: regulation by the carbon source. Crit Rev Microbiol 36(2):146–167PubMedCrossRefGoogle Scholar
  89. Schneider J, Niermann K, Wendisch VF (2011) Production of the amino acids l-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinant Corynebacterium glutamicum. J Biotechnol 154(2–3):191–198PubMedCrossRefGoogle Scholar
  90. Sharma D, Pramanik A, Agrawal PK (2016) Evaluation of bioactive secondary metabolites from endophytic fungus Pestalotiopsis neglecta BAB-5510 isolated from leaves of Cupressus torulosa D.Don. 3 Biotech 6(210):1–10Google Scholar
  91. Show PL, Oladele KO, Siew QY, Zakry FAA, Chi-Wei Lan J, Ling TC (2015) Overview of citric acid production from Aspergillus Niger. Front Life Sci 8(3):271–283CrossRefGoogle Scholar
  92. Singh SB, Ball RG, Zink DL, Monaghan RL, Polishook JD et al (1997) Fusidienol: a novel ras farnesyl-protein transferase inhibitor from Phoma sp. J Org Chem 62(21):7485–7488PubMedCrossRefGoogle Scholar
  93. Singh R, Kumar M, Mittal A, Mehta PK (2016) Microbial enzymes: industrial progress in 21st century. Biotech 6(2):174(1–15)Google Scholar
  94. Singh R, Kumar M, Mittal A, Mehta PK (2017) Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7(1):15:1–15Google Scholar
  95. Smythe CV (1951) Microbiological production of enzymes and their industrial applications. Econ Bot 5(2):126–144CrossRefGoogle Scholar
  96. Spalvins K, Ivanovs K, Blumberga D (2018) Single cell protein production from waste biomass: review of various agricultural by-products. Agron Res 16(S2):1493–1508Google Scholar
  97. Srividya AR, Vishnuvarthan VJ, Murugappan M, Dahake PG (2013) Single cell protein- a review. IJPRS 2(I4):472–485Google Scholar
  98. Steinmeyer J (2000) Pharmacological basis for the therapy of pain and inflammation with nonsteroidal anti-inflammatory drugs. Arthritis Res 2(5):379–385PubMedPubMedCentralCrossRefGoogle Scholar
  99. Stierle A, Strobel G, Stierle D (1993) Taxol and Taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  100. Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67(4):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  101. Strobel G, Ford E, Worapong J, Harper JK, Arif AM, Grant DM, Fung PC, Ming Wah Chau R (2002) Isopestacin, an Isobenzofuranone from Pestalotiopsis microspora, possessing antifungal and antioxidant activities. Phytochemistry 60(2):179–183PubMedCrossRefGoogle Scholar
  102. Tan SY, Tatsumura Y (2015) Alexander Fleming (1881–1955): discoverer of penicillin. Singap Med J 56(7):366–367CrossRefGoogle Scholar
  103. Tiwari SP, Srivastava R, Singh CS, Shukla K, Singh RK et al (2015) Amylases: an overview with special reference to alpha amylase. J Glob Biosci 4(1):1886–1901Google Scholar
  104. Tuli H, Chaudhary P, Beniwal V, Sharma A (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52(8):4669–4678PubMedCrossRefPubMedCentralGoogle Scholar
  105. Ugboguand EC, Ugbogu OC (2016) A review of microbial protein production: prospects and challenges. Trends Sci Technol 1(1):182–185Google Scholar
  106. Underkofler LA, Barton RR, Rennert SS (1958) Production of microbial enzymes and their applications. Appl Microbiol 6(3):212–221PubMedPubMedCentralGoogle Scholar
  107. Upadhyaya S, Tiwari S, Arora NK, Singh DP (2016) Microbial protein: a valuable component for future food security. In: Singh JS, Singh DP (eds) Microbes and environmental management. Studium Press, New DelhiGoogle Scholar
  108. Venkatachalam R, Subban K, Paul MJ (2008) Taxol from Botryodiplodia theobromae (BT 115) an endophytic fungus of Taxus baccata. J Biotechnol 136:S189–S190CrossRefGoogle Scholar
  109. Vermai N, Thakur S, Bhatt AK (2012) Microbial lipases: industrial applications and properties. Int Res J Biol Sci 1:88–92Google Scholar
  110. Vezina C, Kudelski A, Sehgal SN (1975) Rapamycin (AY 22,989) a new antifungal antibiotic. 1: taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot 28:721–726PubMedCrossRefGoogle Scholar
  111. Viswanathan V, Phadatare AG, Mukne A (2014) Antimycobacterial and antibacterial activity of Allium sativum bulbs. Indian J Pharm Sci 76(3):256–261PubMedPubMedCentralGoogle Scholar
  112. Vittaladevaram V (2017) Fermentative production of microbial enzymes and their applications: present status and future prospects. J Appl Biol Biotechnol 5(04):090–094Google Scholar
  113. Waites MJ, Morgan NL, Rockey JS, Higton G (2002) Microbial biomass production. In: Waites MJ, Morgan NL, Rockey JS, Higton G (eds) Industrial microbiology: an introduction. Blackwell Science, Delhi, pp 218–228Google Scholar
  114. Wang L, Yang ST (2007) Solid state fermentation and its applications. In: Yang ST (ed) Bioprocessing for value-added products from renewable resources -new technologies and applications. Elsevier, Amsterdam, pp 465–489CrossRefGoogle Scholar
  115. Wang J, Guleria S, Koffas MAG, Yan Y (2016) Microbial production of value-added nutraceuticals. Curr Opin Biotechnol 37:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  116. Westlake R (1986) Large-scale continuous production of single cell protein. Chemie Ing Tech 58:934–937CrossRefGoogle Scholar
  117. Wiebe MG (2004) Quorn TM Myco-protein-overview of a successful fungal product. Mycologist 18:17–20CrossRefGoogle Scholar
  118. Zabed H, Faruq G, Sahu JN, Azirun MS, Hashim R, Boyce AN (2014) Bioethanol production from fermentable sugar juice. Sci World J. Article ID 957102, pp11Google Scholar
  119. Zahoor A, Lindner SN, Wendisch VF (2012) Metabolic engineering of Corynebacterium glutamicum aimed at alternative carbon sources and new products. Comput Struct Biotechnol 3(4):1–11Google Scholar
  120. Zhang MM, Wang Y, Ang EL, Zhao H (2016) Engineering microbial hosts for production of bacterial natural products. Nat Prod Rep 33(8):963–987PubMedPubMedCentralCrossRefGoogle Scholar
  121. Zhang Q, Han Y, Xiao H (2017) Microbial α-amylase: a biomolecular overview. Process Biochem 53:88–101CrossRefGoogle Scholar
  122. Zhao K, Sun L, Ma X, Li X, Wang X, Ping W, Zhou D (2011) Improved taxol production in Nodulisporium sylviforme derived from inactivated protoplast fusion. Afr J Biotechnol 10(20):4175–4182Google Scholar
  123. Zhao J, Sun W, Shan T, Mou Y, Lou J et al (2012) Antimicrobial metabolites from the endophytic fungus Gliomastix murorum Ppf8 associated with the medicinal plant Paris polyphylla var. yunnanensis. J Med Plants Res 6(11):2100–2104Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Shweta Ranghar
    • 1
  • Shruti Agrawal
    • 2
  • Pavan Kumar Agrawal
    • 1
  1. 1.Department of BiotechnologyG. B. Pant Engineering CollegePauriIndia
  2. 2.Department of MicrobiologySai Institute of Paramedical and Allied SciencesDehradunIndia

Personalised recommendations