Application of Microbial Products for Enhancing the Nutritional Quality of Agricultural Produce

  • Kamlesh K. MeenaEmail author
  • Akash L. Shinde
  • Ajay M. Sorty
  • Utkarsh M. Bitla
  • Harnarayan Meena
  • Narendra P. Singh


Frequently, altering environmental conditions threaten the agricultural productivity and nutritional quality of the produce. Nutritional requirements of human beings are totally dependent on agriculture. Pressure of increasing population on limited agricultural land to produce nutritionally improved agricultural produce is major concern. Copious strategies were suggested to enhance the nutrient quality of agriculture after the harvesting, but very few strategies were developed and applied in situ. The part of PGPR, AMF, and other endophytic microorganisms in enhancing agricultural productivity is well known. Our current knowledge regarding mechanism of microorganisms in enhancing nutrient quality is still in infancy. This chapter characteristically highlights the involvement of microbes in nutritional enhancement of crops produced and focuses on the probable strategies for nutritional improvement in agricultural produce.


Nutritional quality PGPR Agricultural produce Microbial products Biofertilizers 



Authors are indebted to Indian Council of Agricultural Research (ICAR) for financial support through Application of Microorganisms in Agriculture and Allied Sectors (AMAAS).


  1. Abdou MAH, El Sayed AA, Badran FS et al (2004) Effect of planting density and chemical and biofertilization on vegetative growth, yield and chemical composition of fennel (Foeniculum vulgare miller): I - effect of planting density and some chemical (Nofatrein) and biochemical (Biogen) fertilizers. Ann Agric Sci Moshtohor 42:1907–1922Google Scholar
  2. Adesemoye A, Kloepper J (2009) Plant–microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12PubMedCrossRefPubMedCentralGoogle Scholar
  3. Afsaneh AS, Hatima RG, Arsham PR (2013) Effect of biological and chemical fertilizers on medicinal pumpkin features. Int J Manures Ferti 2:260–266Google Scholar
  4. Ahmad F, Ahmad I, Khan MS (2008) Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 263:173–181CrossRefGoogle Scholar
  5. Ahmad P, Hashem A, Abd-Allah EF et al (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L) through antioxidative defense system. Front Plant Sci 6:868. Scholar
  6. Azzaz NA, Hassan EA, Hamad EH et al (2009) The chemical constituent and vegetative and yielding characteristics of fennel plants treated with organic and bio-fertilizer instead of mineral fertilizer. Aust J Basic Appl Sci 3:579–587Google Scholar
  7. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570. Scholar
  8. Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549Google Scholar
  9. Baez-Rogelio A, Morales-Garc YE, Quintero-Hernandez V et al (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10:19–21PubMedCrossRefPubMedCentralGoogle Scholar
  10. Banchio E, Bogino PC, Zygadlo J et al (2008) Plant growth promoting rhizobacteria improve growth and essential oil yield in Origanum majorana L. Biochem Syst Ecol 36:766–771CrossRefGoogle Scholar
  11. Bano Q, Ilyas N, Bano A (2013) Effect of Azospirillum inoculation on maize (zea mays l.) under drought stress. Pak J Bot 45:13–20Google Scholar
  12. Bashan Y, de Bashan LE (2005) Bacteria. In: Hillel D (ed) Encyclopaedia of soils in the environment. Elsevier, Oxford, pp 103–115CrossRefGoogle Scholar
  13. Baslam M, Garmendia I, Goicoechea N et al (2011) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515. Scholar
  14. Berendsen RL (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486PubMedPubMedCentralCrossRefGoogle Scholar
  15. Bhardwaj D, Ansari MW, Sahoo RK et al (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13:66. Scholar
  16. Bitla UM, Sorty AM, Meena KK, Singh NP (2017) Rhizosphere signaling cascades: fundamentals and determinants. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives, vol I. Springer, Singapore, pp 211–226CrossRefGoogle Scholar
  17. Blazinkov M, Sikora S, Sudaric A et al (2015) Improvement of Rhizobial inoculants: a key process in sustainable soybean production. Agric Conspec Sci 1:25–29Google Scholar
  18. Bona E, Lingua G, Manassero P et al (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25:181–193PubMedCrossRefPubMedCentralGoogle Scholar
  19. Bona E, Lingua G, Todeschini V et al (2016) Effect of bioinoculants on the quality of crops. In: Arora NK, Mehnaz S, Balestrini R (eds) Bioformulations: for sustainable agriculture. Springer Inida, New Delhi, pp 93–124Google Scholar
  20. Bona E, Cantamessa S, Massa N et al (2017) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. Mycorrhiza 27:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  21. Castellanos-Morales V, Villegas J, Wendelin S et al (2010) Root colonisation by the arbuscular mycorrhizal fungus Todeschini alters the quality of strawberry fruits (Fragaria × ananassa Duch.) at different nitrogen levels. J Sci Food Agric 90:1774–1782. Scholar
  22. Combs JGF, McClung JP (2016) The vitamins: fundamental aspects in nutrition and health. Academic press, San DiegoGoogle Scholar
  23. Compant S (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678CrossRefGoogle Scholar
  24. Copetta A, Bardi L, Bertolone E et al (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145:106–115. Scholar
  25. Darzi MT, Haj Seyed Hadi MR, Rejali F et al (2012) Effects of the application of Vermicompost and nitrogen fixing bacteria on quantity and quality of the essential oil in dill (Anethum graveolens). J Med Plants Res 6:3793–3799Google Scholar
  26. Deans SG, Waterman PG (1993) Biological activity of volatile oils. In: Hay RKM, Waterman PG (eds) Volatile oil crops. Longman Scientific and Technical, Harlow, pp 97–109Google Scholar
  27. Dobbelaere S, Croonenborghs A, Thys A et al (1999) Phytostimulatory effect of azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 6:155–164Google Scholar
  28. Dodd IC, Belimov AA, Sobeih WY et al (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? 4th International Crop Science CongressGoogle Scholar
  29. Egamberdieva D, Kucharova Z (2009) Selection for root colonizing bacteria stimulating wheat growth in saline soils. Biol Fert Soil Scholar
  30. Erturk Y, Ercisli S, Cakmakci R et al (2012) Yield and growth response of strawberry to plant growth-promoting rhizobacteria inoculation. J Plant Nutr 35:817–826CrossRefGoogle Scholar
  31. Fahad S, Hussain S, Bano A et al (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ. Sci Pollut Res 22:4907–4921CrossRefGoogle Scholar
  32. Flores-Félix JD, Silva LR, Rivera LP et al (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10:e0122281PubMedPubMedCentralCrossRefGoogle Scholar
  33. Garcia-Casal MN, Peña-Rosas JP, Giyose B (2016) Staple crops biofortified with increased vitamins and minerals: considerations for a public health strategy. Ann N Y Acad Sci 1390:3–13PubMedCrossRefPubMedCentralGoogle Scholar
  34. García-Seco D, Zhang Y, Gutierrez-Mañero FJ et al (2015) Application of Pseudomonas fluorescens to blackberry under field conditions improves fruit quality by modifying flavonoid metabolism. PLoS One 10:e0142639PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gharib FA, Moussa LA, Massoud ON et al (2008) Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis). Plant Int J Agri Biol 10:381–387Google Scholar
  36. Ghilavizadeh A, Darzi MT, Seyed Had MH et al (2013) Effects of biofertilizer and plant density on essential oil content and yield traits of Ajowan (Carum copticum). Middle-East J Sci Res 14:1508–1512Google Scholar
  37. Glick BR, Pasternak JJ (2003) Molecular biotechnology: principles and application recombinant dna technology, 3rd edn. ASM Press, Washington, DCGoogle Scholar
  38. Gül A, Kidoglu F, Tüzel Y et al (2008) Effects of nutrition and Bacillus amyloliquefaciens on tomato (Solanum lycopersicum L.) growing in perlite. Span J Agric Res 6:422–429CrossRefGoogle Scholar
  39. Habibzadeh Y, Pirzad A, Zardashti MR et al (2008) Effects of arbuscular mycorrhizal fungi on seed and protein yield under water-deficit stress in mung bean. Agron J 105:79–84CrossRefGoogle Scholar
  40. Harborne JB, Tomas-Barberan FA (1991) Ecological chemistry and biochemistry of plant terpenoids. Oxford University Press, London/OxfordGoogle Scholar
  41. Harrewijn P, van Oosten AM, Piron PGM et al (2001) Natural terpenoids as messengers. Kluwer, DordrechtGoogle Scholar
  42. Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agr Sci 11:57–61Google Scholar
  43. Hussein AH, Ahl S-A, Atef MZ et al (2015) Bio-fertilizer and gamma radiation influencing flavonoids content in different parts of dill herb. Int J Life Sci Eng 1:145–149Google Scholar
  44. Jain PC, Trivedi SK (2005) Response of soybean {Glycine max (L.) MERRIL} to phosphorus and biofertilizers. Legume Res 28:30–33Google Scholar
  45. Jain A, Singh A, Chaudhary A et al (2014) Modulation of nutritional and antioxidant potential of seeds and pericarp of pea pods treated with microbial consortium. Food Res Int 64:275–282. Scholar
  46. Khalafallah AA, Abo-Ghalia HH (2008) Effect of arbuscular mycorrhizal fungi on the metabolic products and activity of antioxidant system in wheat plants subjected to short-term water stress, followed by recovery at different growth stages. J Appl Sci Res 4:559–569Google Scholar
  47. Kumar S, Choudhary GR, Chaudhari AC et al (2002) Effects of nitrogen and biofertilizers on the yield and quality of coriander (Coriandrum sativum L.). Ann Agric Res 23:634–637Google Scholar
  48. Kumar TS, Swaminathan V, Kumar S et al (2009) Influence of nitrogen, phosphorus and biofertilizers on growth, yield and essential oil constituents in ratoon crop of davana (Artemisia pallens wall.). Electron J Environ Agric Food Chem 8:86–95Google Scholar
  49. Kumutha P (2005) Studies on the effect of bio-fertilizers on the germination of Acacia Nilotica Linn. Seeds Adv Plant Sci 18:679–684Google Scholar
  50. Lindemann SR, Bernstein HC, Song HS et al (2016) Engineering microbial consortia for controllable outputs. ISME J 10:2077–2084. Scholar
  51. Lingua G, Bona E, Manassero P et al (2013) Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (Fragaria x ananassa var. Selva) in conditions of reduced fertilization. Int J Mol Sci 14:16207–16225PubMedPubMedCentralCrossRefGoogle Scholar
  52. Lone NA, Mir MR, Khan NA et al (2005) Effect of gibberellic acid on physiological attributes and yield of mustard (Brassica juncea L.). Appl Biol Res 7:24–26Google Scholar
  53. Magda MA, Sabbagh SM, El-shouny WA et al (2003) Physiological response of Zea mays to NaCl stress with respect to Azotobacter chroococcum and Streptomyces niveus. Pakistan J Biol Sci 6:2073–2080CrossRefGoogle Scholar
  54. Mahfouz SA, Sharaf Eldin MA (2007) Effect of mineral vs. biofertilizer on growth, yield and essential oil content of fennel (Foeniculum vulgare mill). Int Agrophisics 21:361–366Google Scholar
  55. Meena KK, Mesapogu S, Kumar M et al (2010) Co-inoculation of the endophytic fungus Piriformospora indica with the phosphate-solubilizing bacterium Pseudomonas striata affects population dynamics and plant growth in chickpea. Biol Fert Soils 46:262–270CrossRefGoogle Scholar
  56. Meena KK, Kumar M, Kalyuzhnaya MG et al (2012) Epiphytic pink-pigmented methylotrophic bacteria enhance germination and seedling growth of wheat (Triticum aestivum) by producing phytohormone. Antonie Van Leeuwenhoek 101:777–786PubMedCrossRefPubMedCentralGoogle Scholar
  57. Meena KK, Sorty AM, Bitla UM et al (2017) Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Front Plant Sci 8:172PubMedPubMedCentralCrossRefGoogle Scholar
  58. Mishra BK, Meena KK, Dubey PN, Aishwath OP, Kant K, Sorty AM, Bitla UM (2016) Influence on yield and quality of fennel (Foeniculum vulgare mill.) grown under semi-arid saline soil, due to application of native phosphate solubilizing rhizobacterial isolates. Ecol Eng 97:327–333CrossRefGoogle Scholar
  59. Mohsennia O, Jalilian J (2012) Response of safflower seed quality characteristics to different soil fertility systems and irrigation disruption. Int Res J Appl Basic Sci 3:968–976Google Scholar
  60. Molla AH, Haque MM, Haque MA, Ilias GNM (2012) Trichoderma-enriched biofertilizer enhances production and nutritional quality of tomato (Lycopersicon esculentum mill.) and minimizes NPK fertilizer use. Agric Res 1:265–272CrossRefGoogle Scholar
  61. Nosheen A, Bano A, Yasmin H et al (2016) Protein quantity and quality of safflower seed improved by NP fertilizer and Rhizobacteria (Azospirillum and Azotobacter spp.). Front Plant Sci 7:104. Scholar
  62. Ochoa-Velasco CE, Valadez-Blanco R, Salas-Coronado R et al (2016) Effect of nitrogen fertilization and Bacillus licheniformis biofertilizer addition on the antioxidants compounds and antioxidant activity of greenhouse cultivated tomato fruits (Solanum lycopersicum L. var. Sheva). Sci Hor 201:338–345CrossRefGoogle Scholar
  63. Ordookhani K, Khavazi K, Moezzi A et al (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. Afr J Agric Res 5:1108–1116Google Scholar
  64. Patra P, Pati BK, Ghosh GK, Mura SS, Saha A (2013) Effect of biofertilizers and Sulphur on growth, yield, and oil content of hybrid sunflower (Helianthus annuus. L) in a typical lateritic soil. J Bacteriol Parasitol 2:603. Scholar
  65. Prathibha KS, Siddalingeshwara KG (2013) Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescence as Rhizobacteria on seed quality of sorghum. Int J Curr Microbiol Appl Sci 2:11–18Google Scholar
  66. Ramos-Solano B, Algar E, Gutierrez-Mañero FJ et al (2015) Bacterial bioeffectors delay postharvest fungal growth and modify total phenolics, flavonoids and anthocyanins in blackberries. LWT-Food Sci Technol 61:437–443CrossRefGoogle Scholar
  67. Rana A, Joshi M, Prasanna R et al (2012) Biofortification of wheat through inoculation of plant growth promoting rhizobacteria and cyanobacteria. Eur J Soil Biol 50:118–126CrossRefGoogle Scholar
  68. Reddy CA, Saravanan RS (2013) Polymicrobial multi-functional approach for enhancement of crop productivity. Adv Appl Microbiol 82:53–113Google Scholar
  69. Rouphael Y, Schwarz D, Krumbein A (2010) Impact of grafting on product quality of fruit vegetables. Sci Hortic 127:172–179CrossRefGoogle Scholar
  70. Rouphael Y, Frankenb P, Schneider C et al (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Scientia Hortic 196:91–108CrossRefGoogle Scholar
  71. Ruzzi M, Aroca R (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic 196:124–134CrossRefGoogle Scholar
  72. Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  73. Sahu PK, Singh DP, Prabha R, Meena KK, Abhilash PC (2018) Connecting microbial capabilities with the soil and plant health: options for agricultural sustainability. Ecol Indic.
  74. Sandhya V, Ali SKZ, Grover M et al (2009) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-P45. Biol Fertil Soils 46:17–26CrossRefGoogle Scholar
  75. Santoro MV, Zygadlo J, Giordano W et al (2011) Volatile organic compounds from rhizobacteria increase biosynthesis of essential oils and growth parameters in peppermint (Mentha piperita). Plant Physiol Biochem 49:1177–1182PubMedCrossRefPubMedCentralGoogle Scholar
  76. Saravanakumar D, Lavanya N, Muthumeena B et al (2008) Pseudomonas fluorescens enhances resistance and natural enemy population in rice plants against leaf folder pest. J Appl Entomol 132:469–479CrossRefGoogle Scholar
  77. Sathianachiyar, Devaraj A (2013) The effect of biofertilizer application on chemical composition of oil from micropropagated Jatropha curcas L. seeds. Int J Pharm Res Allied Sci 4:42–50Google Scholar
  78. Sbrana C, Avio L, Giovanetti M et al (2014) Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. Electrophoresis 35:1535–1546PubMedCrossRefPubMedCentralGoogle Scholar
  79. Schütz L, Gattinger A, Meier M et al (2018) Improving crop yield and nutrient use efficiency via bio fertilization—a global meta-analysis. Front Plant Sci 8:2204. Scholar
  80. Sechi G, Sechi E, Fois C et al (2016) Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults. Nutr Rev 74:107CrossRefGoogle Scholar
  81. Seeram NP (2006) Berries. In: Heber D (ed) Nutritional oncology, 2nd edn. Academic Press, London, pp 615–625CrossRefGoogle Scholar
  82. Selvakumar G, Reetha S, Thamizhiniyan P et al (2012) Response of biofertilizers on growth, yield attributes and associated protein profiling changes of Blackgram (Vigna mungo L. Hepper). World Appl Sci J 16:1368–1374Google Scholar
  83. Sharifi RS (2012) Study of nitrogen rates effects and seed biopriming with PGPR on quantitative and qualitative yield of safflower (Carthamus tinctorius L.). Tech J Eng Appl Sci 2:162–166Google Scholar
  84. Shen F, Zhu TB, Teng MJ et al (2016) Effects of interaction between vermicompost and probiotics on soil nronerty, yield and quality of tomato. Ying Yong Sheng Tai Xue Bao 27:484–490PubMedPubMedCentralGoogle Scholar
  85. Shoghi-Kalkhoran S, Ghalavand A, Modarres-Sanavy SAM et al (2013) Integrated fertilization systems enhance quality and yield of sunflower (Helianthus annuus L.) J. Agric Sci Technol 15:1343–1352Google Scholar
  86. Silva LR, Azevedo J, Pereira MJ et al (2014) Inoculation of the nonlegume Capsicum annuum (L.) with Rhizobium strains. 1. Effect on bioactive compounds, antioxidant activity, and fruit ripeness. J Agr Food Chem 62:557–564CrossRefGoogle Scholar
  87. Simkin SK, Tuck K, Garrett J et al (2016) Vitamin a deficiency: an unexpected cause of visual loss. Lancet 387:93PubMedCrossRefPubMedCentralGoogle Scholar
  88. Singh BK, Trivedi P (2017) Microbiome and the future for food and nutrient security. Microbial Biotechnol 10:50–53. Scholar
  89. Singh AK, Hamel C, DePauw RM et al (2012) Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada. Can J Microbiol 58:293–302PubMedCrossRefPubMedCentralGoogle Scholar
  90. Singh A, Jain A, Sarma BK et al (2014) Beneficial compatible microbes enhance antioxidants in chickpea edible parts through synergistic interactions. LWT Food Sci Technol 56:390–397. Scholar
  91. Singh R, Babu S, Avasthe RK et al (2015) Bacterial inoculation effect on soil biological properties, growth, grain yield, total phenolic and flavonoids contents of common buckwheat (Fagopyrum esculentum Moench) under hilly ecosystems of north-East India. Afr J Microbiol Res 9:1110–1117CrossRefGoogle Scholar
  92. Singh DB, Singh HB, Prabha R et al (2016) Microbial inoculants in sustainable agricultural productivity. Springer, Delhi. Scholar
  93. Sorty AM, Meena KK, Choudhary K et al (2016) Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L.) on germination and seedling growth of wheat under saline conditions. Appl Biochem Biotechnol 180:872–882PubMedCrossRefPubMedCentralGoogle Scholar
  94. Sorty AM, Bitla UM, Meena KK, Singh NP (2018) Role of microorganisms in alleviating abiotic stresses. In: Panpatte DG et al (eds) Microorganisms for green revolution. Springer, Singapore, pp 115–128CrossRefGoogle Scholar
  95. Srinivasan R, Alagawadi AR, Yandigeri MS et al (2012) Characterization of phosphate-solubilizing microorganisms from salt-affected soils of India and their effect on growth of sorghum plants [Sorghum bicolor (L.) Monech]. Annal Microbiol 62:93–105CrossRefGoogle Scholar
  96. Steenhoudt O, Vandereyden J (2000) Azospirillum, free-living nitrogen fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506. Scholar
  97. Stefan M, Munteanu N, Stoleru V et al (2013) Effects of inoculation with plant growth promoting rhizobacteria on photosynthesis, antioxidant status and yield of runner bean. Rom Biotech Lett 18:8132–8143Google Scholar
  98. Sumana DA, Bagyaraj DJ (2002) Interaction between VAM fungus and nitrogen fixing bacteria and their influence on growth and nutrition of neem (Azadirachta indica. A. Juss). Indian J Microbiol 42:295–298Google Scholar
  99. Supanekar S, Sorty A, Raut A (2013) Study of catechol siderophore from a newly isolated Azotobacter sp. SUP-III for its antimicrobial property. J Microbiol Biotechnol Food Sci 3:270–273Google Scholar
  100. Swaminathan V, Kumar TS, Sadasakthi A et al (2008) Effect of nitrogen and phosphorus along with biofertilizers on growth, yield and physiological characteristics of Davana (Artemisia pallens wall.). Adv Plant Sci 21:693–695Google Scholar
  101. Tayeb Rezvani H, Moradi P, Soltani F et al (2013) The effect of nitrogen fixation and phosphorus solvent bacteria on growth physiology and vitamin C content of Capsicum annum L. Iranian J Plant Physiol 3(2):673–682Google Scholar
  102. Timmusk S, Behers L, Muthoni J et al (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49. Scholar
  103. Tiwari S, Singh P, Tiwari R et al (2011) Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth. Biol Fert Soils 47:907CrossRefGoogle Scholar
  104. Umesha S, Singh PK, Singh RP et al (2018) Chapter 6: microbial biotechnology and sustainable agriculture. In: Singh RL, Monda S (eds) Biotechnology for sustainable agriculture. Woodhead Publishing, Sawston, pp 185–205. Scholar
  105. Vala FG, Vaghasia PM, Zala KP et al (2017) Effect of integrated nutrient management on productivity of summer groundnut. (Arachis hypogea L.). Int J Curr Microbiol App Sci 6:1951–1957CrossRefGoogle Scholar
  106. Valadabadi SA, Farahani HA (2011) Investigation of biofertilizers influence on quantity and quality characteristics in Nigella sativa L. J Hortic Forestry 3:88–92Google Scholar
  107. Velmurugan M, Chezhiyan N, Jawaharlal M et al (2008) Influence of organic manures and inorganic fertilizers on cured rhizome yield and quality of turmeric (Curcuma longa L.) cv. BSR-2. Int J Agric Sci 4:142–145Google Scholar
  108. Vosa’tka M, La’tr A, Gianinazzi S et al (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37CrossRefGoogle Scholar
  109. Wani PA, Khan MS, Zaidi A et al (2008a) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium amended soil. Biotechnol Lett 30:159–163. Scholar
  110. Wani PA, Khan MS, Zaidi A et al (2008b) Effect of metal-tolerant plant growth-promoting rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42. Scholar
  111. Yandigiri MS, Meena KK, Singh D, Malviya N et al (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420CrossRefGoogle Scholar
  112. Yildirim E, Turan M, Ekinci M et al (2015) Growth and mineral content of cabbage seedlings in response to nitrogen fixing rhizobacteria treatment. Rom Biotech Lett 20:10929–10935Google Scholar
  113. Zahir ZA, Munir A, Asghar HN et al (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (P. sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedPubMedCentralGoogle Scholar
  114. Zalate PY, Padmani DR (2009) Effect of organic manure and biofertilizers on growth and yield attributing characters of kharif groundnut. Int J of Agric Sci 5(2):343–345Google Scholar
  115. Zeljic K, Supic G, Magic Z et al (2017) New insights into vitamin D anticancer properties: focus on miRNA modulation. Mol Gen Genomics 292:511–524CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kamlesh K. Meena
    • 1
    Email author
  • Akash L. Shinde
    • 1
  • Ajay M. Sorty
    • 1
  • Utkarsh M. Bitla
    • 1
  • Harnarayan Meena
    • 2
  • Narendra P. Singh
    • 1
  1. 1.School of Edaphic Stress ManagementICAR-National Institute of Abiotic Stress ManagementPuneIndia
  2. 2.ICAR-Agricultural Technology Application Research InstituteJodhpurIndia

Personalised recommendations