Advertisement

Molecular Identification of Traditional Medicinal Materials

  • Ming Li
  • Chao Jiang
  • Paul Pui-Hay
  • Pang-Chui ShawEmail author
  • Yuan YuanEmail author
Chapter

Abstract

Traditional medicines are consumed by 80% of the population in the world for health maintenance and disease treatment. The adulteration and substitution of source materials are life-threatening problems that have grown along with its popularity. Consequently, a reliable identification method is important for the safety and quality assurance of traditional Chinese medicine (TCM) materials. Molecular techniques provide an alternative means to conventional organoleptic and chemical identification methods and are superior in terms of their accuracy, sensitivity, resolution and reproducibility. Since the early 1990s, a number of molecular techniques have been developed to identify traditional medicinal materials based on DNA fingerprinting, specific amplification, DNA sequencing, DNA microarrays and fluorescence detection techniques. Molecular techniques are capable of differentiating traditional medicinal materials from their adulterants and substitutes in closely related species, subspecies, variants, cultivars and species from different localities, and, in some cases, they can distinguish the growth year and herb quality. This chapter introduces the major molecular identification techniques and reviews their applications in the identification of animal and botanical medicinal materials.

References

  1. 1.
    World Health Organization. Traditional Medicine. http://www.who.int/mediacentre/factsheets/fs134/en/. 2008 Dec.
  2. 2.
    Vanherweghem J, Tielemans C, Abramowicz D, et al. Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet. 1993;341:387–91.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Vanhaelen M, Vanhaelen-Fastre R, But P, et al. Identification of aristolochic acid in Chinese herbs. Lancet. 1994;343:174.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Debelle FD, Vanherweghem JL, Nortier JL. Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 2008;74:158–69.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Hoang ML, Chen CH, Sidorenko VS, et al. Mutational signature of Aristolochic acid exposure as revealed by whole-exome sequencing. Sci Transl Med. 2013;5:197ra102.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lewis CJ, Alpert S. Letter to health care professionals on FDA concerned about botanical products, including dietary supplements, containing aristolochic acid. US food and drug administration, centre for food safety and applied nutrition, office of nutritional product, labelling and dietary supplements. 2000Google Scholar
  7. 7.
    Gold LS, Slone TH. Aristolochic acid, an herbal carcinogen, sold on the web after FDA alert. New Engl J Med. 2003;349:1576–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lo SH, Wong KS, Arlt VM, et al. Detection of Herba Aristolochia Mollissemae in a patient with unexplained nephropathy. Am J Kidney Dis. 2005;45:407–10.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Li M, Au KY, Lam H, et al. Identification of Baiying (Herba Solani Lyrati) commodity and its toxic substitute Xungufeng (Herba Aristolochiae Mollissimae) using DNA barcoding and chemical profiling techniques. Food Chem. 2012;135:1653–8.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Guo H, Mao H, Pan G, Zhang H, et al. Antagonism of Cortex Periplocae extract induced catecholamines secretion by Panax notoginseng saponins in cultured bovine adrenal medullary cells by drug combinations. J Ethnopharmacol. 2013;147:447–55.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Chen S, Pang X, Song J, et al. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014;32:1237–44.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Cheung KS, Kwan HS, But PPH, et al. Pharmacognostical identification of American and oriental ginseng roots by genomic fingerprinting using arbitrarily primed polymerase chain reaction (AP-PCR). J Ethnopharmacol. 1994;42:67–9.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Cheng KT, Tsay HS, Chen CF, et al. Determination of the components in a Chinese prescription, Yu-Ping-Feng San, by RAPD analysis. Planta Med. 1998;64:563–5.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Huang LQ, YuanY YQJ, et al. Key problems in development of molecular identification in traditional Chinese medicine. China J Chin Mater Med. 2014;39:3663–7.Google Scholar
  15. 15.
    Shaw PC, Jiang RW, Wong KL. Health food and medicine: combined chemical and molecular technologies for authentication and quality control. In: Ebeler SE, Takeoka GR, Winterhalter P, editors. Authentication of food and wine. Washington DC: American Chemical Society; 2007.Google Scholar
  16. 16.
    Shaw PC, Ngan FN, But PPH. Molecular markers in Chinese medicinal materials. In: Shaw PC, Wang J, But PPH, editors. Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific; 2002.CrossRefGoogle Scholar
  17. 17.
    Williams JG, Kubelik AR, Livak KJ, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;18:6531–5.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Zhang C, Mei Z, Cheng J, et al. Development of SCAR markers based on improved RAPD amplification fragments and molecular cloning for authentication of herbal medicines Angelica sinensis, Angelica acutiloba and Levisticum officinale. Nat Prod Commun. 2015;10:1743–7.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Lam K, Chan G, Xin GZ, Xu H, Ku CF, Chen JP, et al. Authentication of Cordyceps sinensis by DNA analyses: comparison of ITS sequence analysis and RAPD-derived molecular markers. Molecules. 2015;20:22454–62.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Moon BC, Ji Y, Lee YM, Kang YM, et al. Authentication of Akebia quinata D ECNE. From its common adulterant medicinal plant species based on the RAPD-derived SCAR markers and multiplex-PCR. Genes Genom. 2015;37:23–32.CrossRefGoogle Scholar
  22. 22.
    Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994;20:176–83.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Hu J, Vick BA. Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep. 2003;21:289–94.CrossRefGoogle Scholar
  24. 24.
    Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in brassica. Theor Appl Genet. 2001;103:455–61.CrossRefGoogle Scholar
  25. 25.
    Collard BC, Mackill DJ. Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep. 2009;27:86.CrossRefGoogle Scholar
  26. 26.
    Su C, Wong KL, But PPH, et al. Molecular authentication of the Chinese herb Huajuhong and related medicinal material by DNA sequencing and ISSR marker. J Food Drug Anal. 2010;18:161–70.Google Scholar
  27. 27.
    Yang LC, Deng H, Yi Y, et al. Identification of medical Dendrobium herbs by ISSR marker. J Chin Med Mater. 2010;33:1841–4.Google Scholar
  28. 28.
    Wang XM. Inter-simple sequence repeats (ISSR) molecular fingerprinting markers for authenticating the genuine species of rhubarb. J Med Plant Res. 2011;5:758–64.Google Scholar
  29. 29.
    Han K, Wang M, Zhang L, et al. Application of molecular methods in the identification of ingredients in Chinese herbal medicines. Molecules. 2018;23:2728.PubMedCentralCrossRefGoogle Scholar
  30. 30.
    Saki S, Bagheri H, Deljou A, et al. Evaluation of genetic diversity amongst Descurainia sophia L. genotypes by inter-simple sequence repeat (ISSR) marker. Physiol Mol Biol Plants. 2016;22:97–105.PubMedCrossRefGoogle Scholar
  31. 31.
    Liu Y, Zhang P, Zhang R, et al. Analysis on genetic diversity of Radix Astragali by ISSR markers. Adv Biosci Biotechnol. 2016;7:381.CrossRefGoogle Scholar
  32. 32.
    Kumar V, Roy BK. Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci Rep. 2018;8:10714.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Ruselll JR, Fuller JD, Macaulay M, et al. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor Appl Genet. 1997;95:714–22.CrossRefGoogle Scholar
  35. 35.
    Ha WY, Yau FCF, Shaw PC, et al. Differentiation of Panax ginseng from P. quinquefolius by amplified fragment length polymorphism. In: Shaw PC, Wang J, But PPH, editors. Authentication of Chinese medicinal materials by DNA technology. Singapore: World Scientific; 2002.Google Scholar
  36. 36.
    Ha WY, Shaw PC, Liu J, et al. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem. 2002;50:1871–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Choi YE, Ahn CH, Kim BB, et al. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer. Biol Pharm Bull. 2008;31:135–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Datwyler SL, Weiblen GD. Genetic variation in hemp and marijuana (Cannabis sativa L.) according to amplified fragment length polymorphisms. J Forensic Sci. 2006;51:371–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Passinho-Soares H, Felix D, Kaplan MA, et al. Authentication of medicinal plant botanical identity by amplified fragmented length polymorphism dominant DNA marker: inferences from the Plectranthus genus. Planta Med. 2006;72:929–31.PubMedCrossRefGoogle Scholar
  40. 40.
    Jiang C, Luo Y, Yuan Y, et al. Conventional octaplex PCR for the simultaneous identification of eight mainstream closely related Dendrobium species. Ind Crop Prod. 2018;112:569–76.CrossRefGoogle Scholar
  41. 41.
    Dechbumroong P, Aumnouypol S, Denduangboripant J, et al. DNA barcoding of Aristolochia plants and development of species-specific multiplex PCR to aid HPTLC in ascertainment of Aristolochia herbal materials. PLoS One. 2018;13:e0202625.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Choi SJ, Ramekar RV, Kim YB, et al. Molecular authentication of two medicinal plants Ligularia fischeri and Ligularia stenocephala using allele-specific PCR (AS-PCR) strategy. Genes Genom. 2017;39:913–20.CrossRefGoogle Scholar
  43. 43.
    Noh P, Kim W, Yang S, et al. Authentication of the herbal medicine Angelicae Dahuricae Radix using an ITS sequence-based multiplex SCAR assay. Molecules. 2018;23:2134.PubMedCentralCrossRefGoogle Scholar
  44. 44.
    Wang J, Ha WY, Ngan FN, et al. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med. 2001;67:781–3.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Jiang C, Yuan Y, Chen M, et al. Molecular authentication of multi-species honeysuckle tablets. Genet Mol Res. 2013;12:4827–35.PubMedCrossRefGoogle Scholar
  46. 46.
    Fu RZ, Wang J, Zhang YB, et al. Differentiation of medicinal Codonopsis species from adulterants by polymerase chain reaction-restriction fragment length polymorphism. Planta Med. 1999;65:648–50.PubMedCrossRefGoogle Scholar
  47. 47.
    Li X, Ding X, Chu B, et al. Molecular authentication of Alisma orientale by PCR-RFLP and ARMS. Planta Med. 2007;73:67–70.PubMedCrossRefGoogle Scholar
  48. 48.
    Wang CZ, Li P, Ding J, et al. Simultaneous identification of Bulbus Fritillariae cirrhosae using PCR-RFLP analysis. Phytomedicine. 2007;14:628–32.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang CZ, Li P, Ding J, et al. Identification of Fritillaria pallidiflora using diagnostic PCR and PCR-RFLP based on nuclear ribosomal DNA internal transcribed spacer sequences. Planta Me. 2005;71:384–6.CrossRefGoogle Scholar
  50. 50.
    Fondon JW III, Hammock EA, Hannan AJ, et al. Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci. 2008;31:328–34.CrossRefGoogle Scholar
  51. 51.
    Jiang C, Yuan Y, Liu GM, et al. EST-SSR identification of Lonicera japonica Thunb. Acta Pharm Sin. 2012;47:803–10.Google Scholar
  52. 52.
    Xie M, Hou B, Han L, et al. Development of microsatellites of Dendrobium officinale and its application in purity identification of germplasm. Acta Pharm Sin. 2010;45:667–72.Google Scholar
  53. 53.
    Zeng S, Xiao G, Guo J, et al. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics. 2010;11:94.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Sakthipriya M, Vishnu SS, Sujith S, et al. Analysis of genetic diversity of Centella asiatica using SSR markers. Int J Appl Sci Biotechnol. 2018;6:103–9.CrossRefGoogle Scholar
  55. 55.
    Choi HI, Kim NH, Kim JH, et al. Development of reproducible EST-derived SSR markers and assessment of genetic diversity in Panax ginseng cultivars and related species. J Ginseng Res. 2011;35:399.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28:63e.CrossRefGoogle Scholar
  57. 57.
    Sasaki Y, Nagumo S. Rapid identification of Curcuma longa and C. aromatica by LAMP. Biol Pharm Bull. 2007;30:2229–30.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Sasaki Y, Komatsu K, Nagumo S. Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of ginseng. Biol Pharm Bull. 2008;31:1806–8.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Jiang C, Huang LQ, Yuan Y, et al. Rapid extraction of DNA from Chinese medicinal materials by alkaline lysis. Chin J Pharm Anal. 2013;33:1081–90.Google Scholar
  60. 60.
    Zou Y, Mason MG, Wang Y, et al. Nucleic acid purification from plants, animals and microbes in under 30 seconds. PLoS Biol. 2017;15:e2003916.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tian E, Liu Q, Ye H, et al. A DNA barcode-based RPA assay (BAR-RPA) for rapid identification of the dry root of Ficus hirta (Wuzhimaotao). Molecules. 2017;22:2261.PubMedCentralCrossRefGoogle Scholar
  62. 62.
    Liu Y, Wang XY, Wei XM, et al. Rapid authentication of Ginkgo biloba herbal products using the recombinase polymerase amplification assay. Sci Rep. 2018;8:8002.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Zhang YB, Wang J, Wang ZT, et al. DNA microarray for identification of the herb of dendrobium species from Chinese medicinal formulations. Planta Med. 2003;69:1172–4.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sze SCW, Zhang YBK, Shaw PC, et al. A DNA microarray for differentiation of the Chinese medicinal herb Dendrobium officinale (Fengdou Shihu) by its 5S ribosomal DNA intergenic spacer region. Biotechnol Appl Biochem. 2008;49:149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Cho Y, Mower JP, Qiu YL, et al. Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci U S A. 2004;101:17741–6.PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hebert PDN, Cywinska A, Ball SL, et al. Biological identifications through DNA barcodes. Proc R Soc B Biol Sci. 2003;270:313–21.CrossRefGoogle Scholar
  67. 67.
    Li X, Yang Y, Henry RJ, et al. Plant DNA barcoding: from gene to genome. Biol Rev. 2015;90:157–66.CrossRefGoogle Scholar
  68. 68.
    Chen S, Pang XH, Song JY, et al. A renaissance in herbal medicine identification: from morphology to DNA. Biotechnol Adv. 2014;32:1237–44.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Hebert PDN, Ratnasingham S, de Waard JR. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B. 2003;270:S96–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Group CPW, Hollingsworth PM, Forrest LL, et al. A DNA barcode for land plants. Proc Natl Acad Sci U S A. 2009;106:12794–7.CrossRefGoogle Scholar
  71. 71.
    Group CPB, Li DZ, Gao LM, et al. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci U S A. 2011;108:19641–6.CrossRefGoogle Scholar
  72. 72.
    Ngan FG, Shaw PC, But PPH, et al. Molecular authentication of Panax species. Phytochemistry. 1999;50:787–91.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lau DT, Shaw PC, Wang J, et al. Authentication of medicinal Dendrobium species by the internal transcribed spacer of ribosomal DNA. Planta Med. 2001;67:456–60.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chen F, Chan HY, Wong KL, et al. Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing. Planta Med. 2008;74:889–92.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Li M, Jiang RW, Hon PM, et al. Authentication of the anti-tumor herb Baihuasheshecao with bioactive marker compounds and molecular sequences. Food Chem. 2010;119:1239–45.CrossRefGoogle Scholar
  76. 76.
    Law SKY, Simmons MP, Techen N, et al. Molecular analyses of the Chinese herb Leigongteng (Tripterygium wilfordii Hook.F.). Phytochemistry. 2011;72:21–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Li M, Ling KH, Lam H, et al. Cardiocrinum seeds as a replacement for Aristolochia fruits in treating cough. J Ethnopharmacol. 2010;130:429–32.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    He J, Wong KL, Shaw PC, et al. Identification of the medicinal plants in Aconitum L. by DNA barcoding technique. Planta Med. 2010;76:1622–8.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Zhang YB, Jiang RW, Li SL, et al. Chemical and molecular characterization of Hong Dangshen, a unique medicinal material for diarrhea in Hong Kong. J Chin Pharm Sci. 2007;16:202–7.Google Scholar
  80. 80.
    Yu MT, Wong KL, Zong YY, et al. Identification of Swertia mussotii and its adulterant Swertia species by 5S rRNA gene spacer. China J Chin Mater Med. 2008;33:502–4.Google Scholar
  81. 81.
    Jiang RW, Hon PM, Xu YT, et al. Isolation and chemotaxonomic significance of tuberostemospironine-type alkaloids from Stemona tuberosa. Phytochemistry. 2006;67:52–7.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Chen S, Yao H, Han J, et al. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One. 2010;5:e8613.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Alvarez I, Wendel JF. Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol. 2003;29:417–34.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Baldwin BG, Sanderson MJ, Porter JM, et al. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard. 1995;82:247–77.CrossRefGoogle Scholar
  85. 85.
    Kress WJ, Erickson DL. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS One. 2007;2:e508.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Dong XM, Yuan Y, Zha LP, et al. Molecular ID for populations of Dendrobium officinale of Yunnan and Anhui Province based on SSR marker. Modern Chin Med. 2017;19:247–77.Google Scholar
  87. 87.
    Zhu FJ, Zhang SS, Yuan Y, et al. Establishment of DNA identity card and analysis of genetic similarity among 58 varieties in Lonicera japonica. China J Chin Mater Med. 2018;43:1825–31.Google Scholar
  88. 88.
    Wang CZ, Li P, Ding JY, et al. Discrimination of Lonicera japonica T HUNB. from different geographical origins using restriction fragment length polymorphism analysis. Biol Pharm Bull. 30:779–82.CrossRefGoogle Scholar
  89. 89.
    Wong KL, Wang J, But PPH, et al. Application of cytochrome b DNA sequences for the authentication of endangered snake species. Forensic Sci Int. 2004;139:49–55.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Murray BG, Friesen N, Heslop-Harrison JS. Molecular cytogenetic analysis of Podocarpus and comparison with other gymnosperm species. Ann Bot. 2002;89:483–9.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Allsopp RC, Vaziri H, Patterson C, et al. Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci U S A. 1992;89:10114–8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Izzo C, Hamer DJ, Bertozzi T, et al. Telomere length and age in pinnipeds: the endangered Australian sea lion as a case study. Mar Mamm Sci. 2011;27:841–51.CrossRefGoogle Scholar
  93. 93.
    Kilian A, Stiff C, Kleinhofs A. Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci U S A. 1995;92:9555–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Liang J, Jiang C, Peng H, et al. Analysis of the age of Panax ginseng based on telomere length and telomerase activity[J]. Sci Rep. 2015;5:7985.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Riha K, Fajkus J, Siroky J, et al. Developmental control of telomere lengths and telomerase activity in plants. Plant Cell. 1998;10:1691–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Aronen T, Ryynänen L. Variation in telomeric repeats of scots pine (Pinus sylvestris L.). Tree Genet Genomes. 2012;8:267–75.CrossRefGoogle Scholar
  97. 97.
    Zentgraf U, Hinderhofer K, Kolb D. Specific association of a small protein with the telomeric DNA-protein complex during the onset of leaf senescence in Arabidopsis thaliana. Plant Mol Biol. 2000;42:429–38.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Yuan G, Sun J, Li H, et al. Identification of velvet antler by random amplified polymorphism DNA combined with non-gel sieving capillary electrophoresis. Mitochondrial DNA. 2014;27:1–7.CrossRefGoogle Scholar
  99. 99.
    Shim YH, Seong RS, Kim DS, et al. Utilization of real-time PCR to detect Rangifer Cornu contamination in Cervi Parvum Cornu. Arch Pharm Res. 2011;34:237–44.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Zha D, Xing X, Yang F. Rapid identification of deer products by multiplex PCR assay. Food Chem. 2011;129:1904–8.CrossRefGoogle Scholar
  101. 101.
    Lu K, Lo C, Lin J. Identification of Testudinis Carapax and Cervi Cornu in Kuei-Lu-Erh-Hsien-Chiao by nested PCR and DNA sequencing methods. J Food Drug Anal. 2009;17:151–5.Google Scholar
  102. 102.
    Luo J, Yan D, Song JY, et al. A strategy for trade monitoring and substitution of the organs of threatened animals. Sci Rep. 2013;3:3108.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Zhang R, Liu C, Huang LQ. Study on the identification of Cornu Cervi Pantotrichum with DNA barcoding. Chin Pharm J. 2011;4:263–6.Google Scholar
  104. 104.
    Fajardo V, González I, López-Calleja I, et al. PCR-RFLP authentication of meats from red deer (Cervus elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), cattle (Bos taurus), sheep (Ovis aries), and goat (Capra hircus). J Agric Food Chem. 2006;54:1144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Druml B, Grandits S, Mayer W, et al. Authenticity control of game meat products--a single method to detect and quantify adulteration of fallow deer (Dama dama), red deer (Cervus elaphus) and sika deer (Cervus nippon) by real-time PCR. Food Chem. 2015;170:508–17.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bielikova M, Pangallo D, Turna J. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) as a molecular discrimination tool for raw and heat-treated game and domestic animal meats. J Food Nutr Res. 2010;49:134–9.Google Scholar
  107. 107.
    Jia J, Shi LC, Xu ZC, et al. Identification of antler powder components based on DNA barcoding technology. Acta Pharm Sin. 2015;10:1356–61.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd.and Shanghai Scientific and Technical Publishers 2019

Authors and Affiliations

  1. 1.Centre for Protein Science and Crystallography, School of Life SciencesThe Chinese University of Hong KongShatin, NTChina
  2. 2.National Resource Center for Chinese Materia MedicaChina Academy of Chinese Medical SciencesBeijingChina

Personalised recommendations