Advertisement

Multi-scale Image Co-segmentation

  • Rachida Es-salhi
  • Imane Daoudi
  • Jonathan Weber
  • Hamid El Ouardi
  • Saida Tallal
  • Hicham Medromi
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 366)

Abstract

This paper focuses on producing accurate segmentation of a set of images at different scales. In the process of image co-segmentation, we turn our attention to the task of computing dense correspondences between a set of images. These correspondences are calculated in a dense grid of pixels, where each pixel is represented by an invariant descriptor computed at a unique, manually selected scale, this scale selection limits the efficiency of image co-segmentation methods when the common foregrounds appear at different scales. In this work, we use scale propagation to compute dense correspondences between images by assuming that if two images are being matched, scales should be assigned by considering feature point detections common to both images. We present both quantitative and qualitative tests, demonstrating significant improvements to segment images with large scale variation.

Keywords

Image co-segmentation Scale selection Dense correspondence Image matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1939–1946. IEEE (2013)Google Scholar
  2. 2.
    Tau, M., Hassner, T.: Dense correspondences across scenes and scales. arXiv preprint arXiv:1406.6323 (2014)
  3. 3.
    Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching - incorporating a global constraint into MRFs. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 993–1000, June 2006Google Scholar
  4. 4.
    Mukherjee, L., Singh, V., Dyer, C.R.: Half-integrality based algorithms for cosegmentation of images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 2028–2035. IEEE (2009)Google Scholar
  5. 5.
    Hochbaum, D.S., Singh, V.: An efficient algorithm for co-segmentation. In: IEEE 12th International Conference on Computer Vision, pp. 269–276. IEEE (2009)Google Scholar
  6. 6.
    Chang, K.Y., Liu, T.L., Lai, S.H.: From co-saliency to co-segmentation: an efficient and fully unsupervised energy minimization model. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2129–2136. IEEE (2011)Google Scholar
  7. 7.
    Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1943–1950. IEEE (2010)Google Scholar
  8. 8.
    Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: iCoseg: interactive co-segmentation with intelligent scribble guidance. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3169–3176. IEEE (2010)Google Scholar
  9. 9.
    Chai, Y., Lempitsky, V., Zisserman, A.: BICoS: a bi-level co-segmentation method for image classification (2011)Google Scholar
  10. 10.
    Joulin, A., Bach, F., Ponce, J.: Multi-class cosegmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 542–549. IEEE (2012)Google Scholar
  11. 11.
    Kim, E., Li, H., Huang, X.: A hierarchical image clustering cosegmentation framework. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 686–693. IEEE (2012)Google Scholar
  12. 12.
    Mukherjee, L., Singh, V., Peng, J.: Scale invariant cosegmentation for image groups. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1881–1888. IEEE (2011)Google Scholar
  13. 13.
    Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2217–2224. IEEE (2011)Google Scholar
  14. 14.
    Kim, G., Xing, E.P., Fei-Fei, L., Kanade, T.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: IEEE International Conference on Computer Vision (ICCV), pp. 169–176. IEEE (2011)Google Scholar
  15. 15.
    Meng, F., Li, H., Liu, G., Ngan, K.N.: Object co-segmentation based on shortest path algorithm and saliency model. IEEE Transactions on Multimedia 14(5), 1429–1441 (2012)CrossRefGoogle Scholar
  16. 16.
    Rubio, J.C., Serrat, J., López, A., Paragios, N.: Unsupervised co-segmentation through region matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 749–756. IEEE (2012)Google Scholar
  17. 17.
    Schenk, T.: Digital photogrammetry-volume i background, fundamentals, automatic orientation procedures. Terra Science, USA (1999)Google Scholar
  18. 18.
    Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Robotica 23(2), 271–271 (2005)zbMATHGoogle Scholar
  19. 19.
    Hassner, T., Basri, R.: Example based 3D reconstruction from single 2D images. In: CVPRW 2006 Conference on Computer Vision and Pattern Recognition Workshop, pp. 15–15. IEEE (2006)Google Scholar
  20. 20.
    Karsch, K., Liu, C., Kang, S.B.: Depth extraction from video using non-parametric sampling. In: Computer Vision–ECCV 2012, pp. 775–788. Springer (2012)Google Scholar
  21. 21.
    Hassner, T., Basri, R.: Single view depth estimation from examples. arXiv preprint arXiv:1304.3915 (2013)
  22. 22.
    Hassner, T.: Viewing real-world faces in 3D. In: IEEE International Conference on Computer Vision (ICCV), pp. 3607–3614. IEEE (2013)Google Scholar
  23. 23.
    Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer vision algorithms. In: Proceedings of the International Conference on Multimedia, pp. 1469–1472. ACM (2010)Google Scholar
  24. 24.
    Kokkinos, I., Yuille, A.: Scale invariance without scale selection. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)Google Scholar
  25. 25.
    Hassner, T., Mayzels, V., Zelnik-Manor, L.: On sifts and their scales. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1522–1528. IEEE (2012)Google Scholar
  26. 26.
    Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W.T.: Sift flow: dense correspondence across different scenes. In: Computer Vision–ECCV 2008, pp. 28–42. Springer (2008)Google Scholar
  27. 27.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  28. 28.
    Torralba, A., Russell, B.C., Yuen, J.: Labelme: Online image annotation and applications. Proceedings of the IEEE 98(8), 1467–1484 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  • Rachida Es-salhi
    • 1
  • Imane Daoudi
    • 1
    • 2
  • Jonathan Weber
    • 3
  • Hamid El Ouardi
    • 1
  • Saida Tallal
    • 1
  • Hicham Medromi
    • 1
  1. 1.Systems Architecture Research Group, ENSEMHassan II UniversityCasablancaMorocco
  2. 2.Greentic, Hassan II UniversityCasablancaMorocco
  3. 3.LORIALorraine UniversityNancyFrance

Personalised recommendations