Miniaturized Wideband Flexible CPW Antenna with Hexagonal Ring Slots for Early Breast Cancer Detection

  • Afyf AmalEmail author
  • Bellarbi Larbi
  • Achour Anouar
  • Riouch Fatima
  • Errachid Abdelhamid
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 366)


This paper presents a miniaturized flexible microstrip antenna designed using a Liquid crystal polymer (LCP) material. The developed design consists on a hexagon radiator with two ring slots excited by a CPW feed line, providing an operating frequency in S-band at 3GHz with an important bandwidth of 600MHz. This structure offers a thin thickness (1.6mm) with an overall size of 30×20 mm2 that’s can assure an easy integration into clothes as wearable antennas used for early breast cancer detection. Modeling and performances evaluation of the proposed antenna in terms of return loss, voltage standing wave ratio, radiation pattern, and current distribution have been carried out using CST-MW STUDIO simulator.


Miniaturized flexible CPW-fed UWB antenna LCP Wearable antennas Early breast cancer detection Ring hexagonal slots CST-MW STUDIO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hu, J.: Overview of flexible electronics from ITRIs viewpoint. In: VLSI Test Symposium (VTS), April 2010Google Scholar
  2. 2.
    Nathan, A., Chalamala, B.R.: Special issue on flexible electronics technology, part 1: systems and applications. Proceedings of the IEEE 93(7), 1235–1238 (2005)CrossRefGoogle Scholar
  3. 3.
    Rhee, W., Xu, N., Zhou, B., Wang, Z.: Low power, non invasive UWB systems for WBAN and biomedical applications. In: ICTC 2010, Jeju, Korea (2010)Google Scholar
  4. 4.
    Starner, T.E.: Wearable computing for the developing world. IEEE Pervasive Comput. 4, 87–91 (2005)CrossRefGoogle Scholar
  5. 5.
    Salonen, P., Rantanen, J.: A dual band and wide-band antenna on flexible substrate for smart clothing. In: 27th Annual Conference of the IEEE, vol. 1 (2001)Google Scholar
  6. 6.
    Sanz-Izquierdo, B., Sobhy, M.I., Batchelor, J.C.: UWB wearable button antenna. In: European Conference on Antennas and Propagation EuCAP 2006, Nice, France, p. 131, November 2006Google Scholar
  7. 7.
    Heterogeneous electronics with low interfacial residual stress. IEEE Transactions on Components, Packaging and Manufacturing Technology 1(9), 1368–1377 (2004)Google Scholar
  8. 8.
    Afyf, A., Bellarbi, L.: A Novel Miniaturized UWB antenna for microwave imaging. In: Proc. of ICMCS 2014. IEEE (2014)Google Scholar
  9. 9.
    Wellman, P.S., Dalton, E.P., Krag, D., Kern, K.A., Howe, R.D.: Tactile imaging of breast masses. Archives of Surgery 136, 204–208 (2001)CrossRefGoogle Scholar
  10. 10.
    Fear, E., Li, X., Hagness, S., Stuchly, M.: Confocal microwave imaging for breast tumor detection: localization in three dimensions. IEEE Trans. Antennas Propag. 49(8), 812–822 (2002)Google Scholar
  11. 11.
    Zasowski, T., Althaus, F., Stäger, M., Wittneben, A., Tröster, G.: UWB for noninvasive wireless body area networks: channel measurements and results. At the IEEE Ultra Wideband Syst. Technol. Conf. (UWBST 2003), Reston, VA, November 2003Google Scholar
  12. 12.
    Langley, R.J., Ford, K.L., Lee, H.J.: Switchable on/offbody communication at 2.45 GHz using textile microstrip patch antenna on stripline. In: 6th European Conference on Antennas and Propagation (EUCAP), pp. 728–731 (2012)Google Scholar
  13. 13.
    Movassaghi, S., Abolhasan, M., Lipman, J.: Wireless body area networks: a survey. IEEE Communications Surveys & Tutorials (2014)Google Scholar
  14. 14.
    Ellis, H., Colborn, G.L., Skandalakis, J.E.: Surgical embryology and anatomy of breast and its related anatomic structures. Surgical Clinic North America 73, 611–632 (1993)CrossRefGoogle Scholar
  15. 15.
    Jacobi, C.E., Siegerink, B., Asperen, C.J.: Differences and similarities in breast cancer risk assessment models in clinical practice: which model to choose. Breast Cancer Res. Treat. 115, 381–390 (2009)CrossRefGoogle Scholar
  16. 16.
    Warren, L.S., Thiele, A.G.: Antenna Theory and Design. John Wiley & Sons Inc., New York (1998)Google Scholar
  17. 17.
    Kiani, I.G.: Coplanar Microstrip Active Integrated Antenna for Dual Band Low Noise Amplifier, M.Sc Thesis, Department of Electronic Engineering. GIK Institute of Engineering Sciences and Technology, Swabi, NWFP, Pakistan, May 2003Google Scholar
  18. 18.
    Thompson, C.D., Tantot, O., Jallageas, H., Ponchak, E.G., Tentzeris, M.M., Papapolymerou, J.: Characterization of liquid crystal polymer (LCP) material and transmission lines on LCP substrates from 30 to 110 GHz. IEEE Transactions on Microwave Theory and Techniques 52(4), April 2004Google Scholar
  19. 19.
    Zou, G., Gronqvist, H., Starski, J.P., Liu, J.: Characterization of liquid crystal polymer for high frequency system-in-package applications. IEEE Transactions on Advanced Packaging (2002)Google Scholar
  20. 20.
    Karbassi, A., Ruf, D., Bettermann, A.D., Paulson, C.A., Weide, V.D., Daniel, W., Tanbakuchi, H., Stancliff, R.: Quantitative scanning nearfield microwave microscopy for thin film dielectric constant measurement. Review of Scientific Instruments 79(9), 094706-094706-5 (2007)CrossRefGoogle Scholar
  21. 21.
    Ming, L., Fortin, J., Kim, J.Y., Fox, G., Chu, F., Davenport, T., TohMing, L., XiCheng, Z.: Dielectric constant measurement of thin films using goniometric terahertz time-domain spectroscopy. Selected Topics in Quantum Electronics (2000)Google Scholar
  22. 22.
    Geise, A., Strohmaier, U., Jacob, A.F.: Investigations of transmission lines and resonant structures onflexed liquid crystal polymer (LCP) substrate sup to 67GHz. In: Proc. Eur. Microw. Conf., pp. 735–738, October 2009Google Scholar
  23. 23.
    Vyas, R., Rida, A., Bhattacharya, S., Tentzeris, M.M.: Liquid crystal polymer (LCP): the ultimate solution for low-cost RFflexible electronics and antennas. In: Proc. IEEE Antennas Propag. Soc. Int. Symp., pp. 1729–1732, June 2007Google Scholar
  24. 24.
    Pengcheng, L., Jianxin, L., Xiaodong, C.: Study of printed elliptical/circular slot antennas for ultrawideband applications. IEEE Trans. Antennas Propag. 54, 1670–1675 (2006)CrossRefGoogle Scholar
  25. 25.
    Liang, J., Guo, L., Chiau, C.C., Chen, X., Parini, G.C.: Study of CPW-fed circular disc monopole antenna for ultra wideband applications. IEEE Microwaves, Antennas and Propag. Proc., 520–526 (2005)CrossRefGoogle Scholar
  26. 26.
    Nikolaou, S.: Design and implementation of compact reconfigurable antennasfor uwb and wlan applications, Thesis dissertation (2007)Google Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Open Access This chapter is licensed under the terms of the Creative Commons Attribution-NonCommercial 2.5 International License (, which permits any noncommercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Authors and Affiliations

  • Afyf Amal
    • 1
    Email author
  • Bellarbi Larbi
    • 1
  • Achour Anouar
    • 1
  • Riouch Fatima
    • 2
  • Errachid Abdelhamid
    • 3
  1. 1.Electrical Engineering Laboratory (LGE)Higher National School of Technical Education (ENSET)RabatMorocco
  2. 2.SRTS LaboratoryNational Institute of Post and Telecommunications (INPT)RabatMorocco
  3. 3.Institute of Analytic Sciences (ISA)University of LyonLyonFrance

Personalised recommendations