Advertisement

Introduction to Observational Cosmology

  • Masato Shirasaki
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

An array of recent astrophysical observations show us two unresolved mysteries of cosmology; the accelerating expansion of the universe and the existence of dark matter. In order to realize the cosmic acceleration in General relativity, an exotic form of energy, now called dark energy, should be dominated in the present universe. Another unknown content of the universe is dark matter. Dark matter dominates the dynamics of the universe and plays an important role of formation of rich structure of the universe. Here, we summarize some evidences of the accelerating expansion of the universe and the existence of dark matter. we then introduce the gravitational lensing as a tool to reveal mysterious dark components in the universe.

Keywords

The accelerating expansion of the universe The existence of dark matter Statistical analysis of gravitational lensing 

References

  1. 1.
    A. Einstein, Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie, Sitzungsberichte der Königlich Preußischen Akademie der Wissenschaften (Berlin). Seite 142–152, 142–152 (1917)Google Scholar
  2. 2.
    E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. 15, 168–173 (1929)Google Scholar
  3. 3.
    C.T. Kowal, Absolute magnitudes of supernovae. Astron. J. 73, 1021–1024 (1968)Google Scholar
  4. 4.
    M. Hamuy, M.M. Phillips, N.B. Suntzeff, R.A. Schommer, J. Maza, R. Aviles, The absolute luminosities of the Calan/Tololo type IA supernovae. Astron. J. 112, 2391 (1996). astro-ph/9609059
  5. 5.
    A.G. Riess, W.H. Press, R.P. Kirshner, A precise distance indicator: type IA supernova multicolor light-curve shapes. Astrophys. J. 473, 88 (1996). astro-ph/9604143
  6. 6.
    M.M. Phillips, The absolute magnitudes of type IA supernovae. Astrophys. J. Lett. 413, L105–L108 (1993)Google Scholar
  7. 7.
    B.P. Schmidt, N.B. Suntzeff, M.M. Phillips, R.A. Schommer, A. Clocchiatti, R.P. Kirshner, P. Garnavich, P. Challis, B. Leibundgut, J. Spyromilio, A.G. Riess, A.V. Filippenko, M. Hamuy, R.C. Smith, C. Hogan, C. Stubbs, A. Diercks, D. Reiss, R. Gilliland, J. Tonry, J. Maza, A. Dressler, J. Walsh, R. Ciardullo, The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type IA supernovae. Astrophys. J. 507, 46–63 (1998). astro-ph/9805200
  8. 8.
    S. Perlmutter, S. Gabi, G. Goldhaber, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, R. Pain, C.R. Pennypacker, I.A. Small, R.S. Ellis, R.G. McMahon, B.J. Boyle, P.S. Bunclark, D. Carter, M.J. Irwin, K. Glazebrook, H.J.M. Newberg, A.V. Filippenko, T. Matheson, M. Dopita, W.J. Couch, Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z >= 0.35. Astrophys. J. 483, 565–581 (1997). astro-ph/9608192
  9. 9.
    A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P.M. Garnavich, R.L. Gilliland, C.J. Hogan, S. Jha, R.P. Kirshner, B. Leibundgut, M.M. Phillips, D. Reiss, B.P. Schmidt, R.A. Schommer, R.C. Smith, J. Spyromilio, C. Stubbs, N.B. Suntzeff, J. Tonry, Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). astro-ph/9805201
  10. 10.
    S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent, P.G. Castro, S. Deustua, S. Fabbro, A. Goobar, D.E. Groom, I.M. Hook, A.G. Kim, M.Y. Kim, J.C. Lee, N.J. Nunes, R. Pain, C.R. Pennypacker, R. Quimby, C. Lidman, R.S. Ellis, M. Irwin, R.G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B.J. Boyle, A.V. Filippenko, T. Matheson, A.S. Fruchter, N. Panagia, H.J.M. Newberg, W.J. Couch, T.S.C. Project, Measurements of \(\varOmega \) from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999). astro-ph/9812133
  11. 11.
    R.A. Alpher, H. Bethe, G. Gamow, The origin of chemical elements. Phys. Rev. 73, 803–804 (1948)Google Scholar
  12. 12.
    R.A. Alpher, R.C. Herman, Remarks on the evolution of the expanding universe. Phys. Rev. 75, 1089–1095 (1949)Google Scholar
  13. 13.
    W. Hu, N. Sugiyama, J. Silk, The physics of microwave background anisotropies. Nature 386, 37–43 (1997). astro-ph/9504057
  14. 14.
    G. Hinshaw, D.N. Spergel, L. Verde, R.S. Hill, S.S. Meyer, C. Barnes, C.L. Bennett, M. Halpern, N. Jarosik, A. Kogut, E. Komatsu, M. Limon, L. Page, G.S. Tucker, J.L. Weiland, E. Wollack, E.L. Wright, First-year wilkinson microwave anisotropy probe (WMAP) observations: the angular power spectrum. Astron. Astrophys. Suppl. 148, 135–159 (2003). astro-ph/0302217
  15. 15.
    D.J. Eisenstein, I. Zehavi, D.W. Hogg, R. Scoccimarro, M.R. Blanton, R.C. Nichol, R. Scranton, H.-J. Seo, M. Tegmark, Z. Zheng, S.F. Anderson, J. Annis, N. Bahcall, J. Brinkmann, S. Burles, F.J. Castander, A. Connolly, I. Csabai, M. Doi, M. Fukugita, J.A. Frieman, K. Glazebrook, J.E. Gunn, J.S. Hendry, G. Hennessy, Z. Ivezić, S. Kent, G.R. Knapp, H. Lin, Y.-S. Loh, R.H. Lupton, B. Margon, T.A. McKay, A. Meiksin, J.A. Munn, A. Pope, M.W. Richmond, D. Schlegel, D.P. Schneider, K. Shimasaku, C. Stoughton, M.A. Strauss, M. SubbaRao, A.S. Szalay, I. Szapudi, D.L. Tucker, B. Yanny, D.G. York, Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies. Astrophys. J. 633, 560–574 (2005). astro-ph/0501171
  16. 16.
    W.M.A.P. Collaboration, G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett, J. Dunkley, M.R. Nolta, M. Halpern, R.S. Hill, N. Odegard, L. Page, K.M. Smith, J.L. Weiland, B. Gold, N. Jarosik, A. Kogut, M. Limon, S.S. Meyer, G.S. Tucker, E. Wollack, E.L. Wright, Nine-year wilkinson microwave anisotropy probe (WMAP) observations: cosmological parameter results. Astrophys. J. Suppl. 208, 19 (2013). arXiv:1212.5226 ADSCrossRefGoogle Scholar
  17. 17.
    L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blanton, A.S. Bolton, J. Brinkmann, J.R. Brownstein, A. Burden, C.-H. Chuang, A.J. Cuesta, K.S. Dawson, D.J. Eisenstein, S. Escoffier, J.E. Gunn, H. Guo, S. Ho, K. Honscheid, C. Howlett, D. Kirkby, R.H. Lupton, M. Manera, C. Maraston, C.K. McBride, O. Mena, F. Montesano, R.C. Nichol, S.E. Nuza, M.D. Olmstead, N. Padmanabhan, N. Palanque-Delabrouille, J. Parejko, W.J. Percival, P. Petitjean, F. Prada, A.M. Price-Whelan, B. Reid, N.A. Roe, A.J. Ross, N.P. Ross, C.G. Sabiu, S. Saito, L. Samushia, A.G. Sánchez, D.J. Schlegel, D.P. Schneider, C.G. Scoccola, H.-J. Seo, R.A. Skibba, M.A. Strauss, M.E.C. Swanson, D. Thomas, J.L. Tinker, R. Tojeiro, M.V. Magaña, L. Verde, D.A. Wake, B.A. Weaver, D.H. Weinberg, M. White, X. Xu, C. Yèche, I. Zehavi, G.-B. Zhao. The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: baryon acoustic oscillations in the Data Releases 10 and 11 galaxy samples. Mon. Not. Roy. Astron. Soc. 441, 24–62 (2014). arXiv:1312.4877
  18. 18.
    F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110–127 (1933)ADSzbMATHGoogle Scholar
  19. 19.
    J.P. Ostriker, P.J.E. Peebles, A numerical study of the stability of flattened galaxies: or, can cold galaxies survive? Astrophys. J. 186, 467–480 (1973)Google Scholar
  20. 20.
    M.L. Wilson, J. Silk, On the anisotropy of the cosmological background matter and radiation distribution. I. The radiation anisotropy in a spatially flat universe. Astrophys. J. 243, 14–25 (1981)Google Scholar
  21. 21.
    M.L. Wilson, On the anisotropy of the cosmological background matter and radiation distribution. II. The radiation anisotropy in models with negative spatial curvature. Astrophys. J. 273, 2–15 (1983)Google Scholar
  22. 22.
    J.R. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. Lett. 285, L45–L48 (1984)Google Scholar
  23. 23.
    A. Bosma, 21-cm line studies of spiral galaxies. I. Observations of the galaxies NGC 5033, 3198, 5055, 2841, and 7331. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 86, 1791–1846 (1981)Google Scholar
  24. 24.
    K.G. Begeman, A.H. Broeils, R.H. Sanders, Extended rotation curves of spiral galaxies—dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523–537 (1991)Google Scholar
  25. 25.
    M. Markevitch, A.H. Gonzalez, L. David, A. Vikhlinin, S. Murray, W. Forman, C. Jones, W. Tucker, A textbook example of a bow shock in the merging galaxy cluster 1E 0657-56. Astrophys. J. Lett. 567, L27–L31 (2002). astro-ph/0110468
  26. 26.
    D. Clowe, A. Gonzalez, M. Markevitch, Weak-lensing mass reconstruction of the interacting cluster 1E 0657-558: direct evidence for the existence of dark matter. Astrophys. J. 604 596–603 (2004). astro-ph/0312273
  27. 27.
    N.A. Bahcall, L.M. Lubin, V. Dorman, Where is the dark matter? Astrophys. J. Lett. 447, L81 (1995). astro-ph/9506041
  28. 28.
    R.G. Carlberg, H.K.C. Yee, E. Ellingson, R. Abraham, P. Gravel, S. Morris, C.J. Pritchet, Galaxy cluster virial masses and omega. Astrophys. J. 462, 32 (1996). astro-ph/9509034
  29. 29.
    A. Conley, J. Guy, M. Sullivan, N. Regnault, P. Astier, C. Balland, S. Basa, R.G. Carlberg, D. Fouchez, D. Hardin, I.M. Hook, D.A. Howell, R. Pain, N. Palanque-Delabrouille, K.M. Perrett, C.J. Pritchet, J. Rich, V. Ruhlmann-Kleider, D. Balam, S. Baumont, R.S. Ellis, S. Fabbro, H.K. Fakhouri, N. Fourmanoit, S. González-Gaitán, M.L. Graham, M.J. Hudson, E. Hsiao, T. Kronborg, C. Lidman, A.M. Mourao, J.D. Neill, S. Perlmutter, P. Ripoche, N. Suzuki, E.S. Walker, Supernova constraints and systematic uncertainties from the first three years of the supernova legacy survey. Astron. Astrophys. Suppl. 192, 1 (2011). arXiv:1104.1443
  30. 30.
    N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Amanullah, K. Barbary, L.F. Barrientos, J. Botyanszki, M. Brodwin, N. Connolly, K.S. Dawson, A. Dey, M. Doi, M. Donahue, S. Deustua, P. Eisenhardt, E. Ellingson, L. Faccioli, V. Fadeyev, H.K. Fakhouri, A.S. Fruchter, D.G. Gilbank, M.D. Gladders, G. Goldhaber, A.H. Gonzalez, A. Goobar, A. Gude, T. Hattori, H. Hoekstra, E. Hsiao, X. Huang, Y. Ihara, M.J. Jee, D. Johnston, N. Kashikawa, B. Koester, K. Konishi, M. Kowalski, E.V. Linder, L. Lubin, J. Melbourne, J. Meyers, T. Morokuma, F. Munshi, C. Mullis, T. Oda, N. Panagia, S. Perlmutter, M. Postman, T. Pritchard, J. Rhodes, P. Ripoche, P. Rosati, D.J. Schlegel, A. Spadafora, S.A. Stanford, V. Stanishev, D. Stern, M. Strovink, N. Takanashi, K. Tokita, M. Wagner, L. Wang, N. Yasuda, H.K.C. Yee, The supernova cosmology project. The hubble space telescope cluster supernova survey. V. improving the dark-energy constraints above z> 1 and building an early-type-hosted supernova sample. Astrophys. J. 746, 85 (2012). arXiv:1105.3470
  31. 31.
    M. Tegmark, M.A. Strauss, M.R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D.H. Weinberg, I. Zehavi, N.A. Bahcall, F. Hoyle, D. Schlegel, R. Scoccimarro, M.S. Vogeley, A. Berlind, T. Budavari, A. Connolly, D.J. Eisenstein, D. Finkbeiner, J.A. Frieman, J.E. Gunn, L. Hui, B. Jain, D. Johnston, S. Kent, H. Lin, R. Nakajima, R.C. Nichol, J.P. Ostriker, A. Pope, R. Scranton, U. Seljak, R.K. Sheth, A. Stebbins, A.S. Szalay, I. Szapudi, Y. Xu, J. Annis, J. Brinkmann, S. Burles, F.J. Castander, I. Csabai, J. Loveday, M. Doi, M. Fukugita, B. Gillespie, G. Hennessy, D.W. Hogg, Ž. Ivezić, G.R. Knapp, D.Q. Lamb, B.C. Lee, R.H. Lupton, T.A. McKay, P. Kunszt, J.A. Munn, L. O’Connell, J. Peoples, J.R. Pier, M. Richmond, C. Rockosi, D.P. Schneider, C. Stoughton, D.L. Tucker, D.E. vanden Berk, B. Yanny, D.G. York, Cosmological parameters from SDSS and WMAP. Phys. Rev. D 69, 103501 (2004). astro-ph/0310723
  32. 32.
    M. Tegmark et al., SDSS Collaboration, Cosmological constraints from the SDSS luminous red galaxies. Phys. Rev. D 74, 123507 (2006). astro-ph/0608632
  33. 33.
    D.H. Weinberg, J.S. Bullock, F. Governato, R. Kuzio de Naray, A.H.G. Peter, Cold dark matter: controversies on small scales. ArXiv e-prints (2013). arXiv:1306.0913
  34. 34.
    X. Chen, Primordial non-gaussianities from inflation models. Adv. Astron. 2010, 72 (2010). arXiv:1002.1416 ADSCrossRefGoogle Scholar
  35. 35.
    M. Sato, T. Hamana, R. Takahashi, M. Takada, N. Yoshida, T. Matsubara, N. Sugiyama, Simulations of wide-field weak lensing surveys. I. Basic statistics and non-gaussian effects. Astrophys. J. 701, 945–954 (2009). arXiv:0906.2237
  36. 36.
    W. Hu, M. Tegmark, Weak lensing: prospects for measuring cosmological parameters. Astrophys. J. Lett. 514, L65–L68 (1999). astro-ph/9811168
  37. 37.
    W. Hu, Power spectrum tomography with weak lensing. Astrophys. J. Lett. 522, L21–L24 (1999). astro-ph/9904153
  38. 38.
    C. M. Hirata, U. Seljak, Intrinsic alignment-lensing interference as a contaminant of cosmic shear. Phys. Rev. D 70, 063526 (2004). astro-ph/0406275
  39. 39.
    D. Kirk, A. Rassat, O. Host, S. Bridle, The cosmological impact of intrinsic alignment model choice for cosmic shear. Mon. Not. Roy. Astron. Soc. 424, 1647–1657 (2012). arXiv:1112.4752
  40. 40.
    B. Joachimi, R. Mandelbaum, F.B. Abdalla, S.L. Bridle, Constraints on intrinsic alignment contamination of weak lensing surveys using the MegaZ-LRG sample. Astron. Astrophys. 527, A26 (2011). arXiv:1008.3491
  41. 41.
    D. Huterer, M. Takada, G. Bernstein, B. Jain, Systematic errors in future weak-lensing surveys: requirements and prospects for self-calibration. Mon. Not. Roy. Astron. Soc. 366, 101–114 (2006). astro-ph/0506030
  42. 42.
    R. Massey, H. Hoekstra, T. Kitching, J. Rhodes, M. Cropper, J. Amiaux, D. Harvey, Y. Mellier, M. Meneghetti, L. Miller, S. Paulin-Henriksson, S. Pires, R. Scaramella, T. Schrabback, Origins of weak lensing systematics, and requirements on future instrumentation (or knowledge of instrumentation). Mon. Not. Roy. Astron. Soc. 429, 661–678 (2013). arXiv:1210.7690
  43. 43.
    J.A. Tyson, F. Valdes, J.F. Jarvis, A.P. Mills, Jr., Galaxy mass distribution from gravitational light deflection. Astrophys. J. Lett. 281, L59–L62 (1984)Google Scholar
  44. 44.
    L. van Waerbeke, Scale dependence of the bias investigated by weak lensing. Astron. Astrophys. 334, 1–10 (1998). astro-ph/9710244
  45. 45.
    P. Schneider, Cosmic shear and biasing. Astrophys. J. 498, 43–47 (1998). astro-ph/9708269
  46. 46.
    U. Seljak, A. Makarov, R. Mandelbaum, C.M. Hirata, N. Padmanabhan, P. McDonald, M.R. Blanton, M. Tegmark, N.A. Bahcall, J. Brinkmann, SDSS galaxy bias from halo mass-bias relation and its cosmological implications. Phys. Rev. D 71, 043511 (2005). astro-ph/0406594
  47. 47.
    T. Baldauf, R.E. Smith, U. Seljak, R. Mandelbaum, Algorithm for the direct reconstruction of the dark matter correlation function from weak lensing and galaxy clustering. Phys.Rev. D 81, 063531 (2010). arXiv:0911.4973
  48. 48.
    R. Mandelbaum, A. Slosar, T. Baldauf, U. Seljak, C.M. Hirata, R. Nakajima, R. Reyes, R.E. Smith, Cosmological parameter constraints from galaxy-galaxy lensing and galaxy clustering with the SDSS DR7. Mon. Not. Roy. Astron. Soc. 432, 1544–1575 (2013). arXiv:1207.1120
  49. 49.
    M. Oguri, M. Takada, Combining cluster observables and stacked weak lensing to probe dark energy: self-calibration of systematic uncertainties. Phys. Rev. D 83, 023008 (2011). arXiv:1010.0744 ADSCrossRefGoogle Scholar
  50. 50.
    W. Hu, B. Jain, Joint galaxy-lensing observables and the dark energy. Phys. Rev. D 70, 043009 (2004). astro-ph/0312395
  51. 51.
    F. Bernardeau, L. van Waerbeke, and Y. Mellier, Weak lensing statistics as a probe of OMEGA and power spectrum., Astronomy and Astrophysics 322 (June, 1997) 1–18, [astro-ph/9609122]Google Scholar
  52. 52.
    L. Hui, Weighing the cosmological energy contents with weak gravitational lensing. Astrophys. J. Lett. 519, L9–L12 (1999). astro-ph/9902275
  53. 53.
    M. Takada, B. Jain, Cosmological parameters from lensing power spectrum and bispectrum tomography. Mon. Not. Roy. Astron. Soc. 348, 897–915 (2004). astro-ph/0310125
  54. 54.
    I. Kayo, M. Takada, B. Jain, Information content of weak lensing power spectrum and bispectrum: including the non-Gaussian error covariance matrix. Mon. Not. Roy. Astron. Soc. 429, 344–371 (2013). arXiv:1207.6322
  55. 55.
    T. Hamana, M. Takada, N. Yoshida, Searching for massive clusters in weak lensing surveys. Mon. Not. Roy. Astron. Soc. 350, 893 (2004). astro-ph/0310607 ADSCrossRefGoogle Scholar
  56. 56.
    J.F. Hennawi, D.N. Spergel, Shear-selected cluster cosmology: tomography and optimal filtering. Astrophys. J. 624, 59–79 (2005). astro-ph/0404349
  57. 57.
    L. Marian, G.M. Bernstein, Dark energy constraints from lensing-detected galaxy clusters. Phys. Rev. D 73, 123525 (2006). astro-ph/0605746
  58. 58.
    W. Fang, Z. Haiman, Constraining dark energy by combining cluster counts and shear-shear correlations in a weak lensing survey. Phys. Rev. D 75, 043010 (2007). astro-ph/0612187
  59. 59.
    M. Takada, S. Bridle, Probing dark energy with cluster counts and cosmic shear power spectra: including the full covariance. New J. Phys. 9 446. arXiv:0705.0163
  60. 60.
    L. Marian, R. E. Smith, S. Hilbert, P. Schneider, The cosmological information of shear peaks: beyond the abundance. Mon. Not. Roy. Astron. Soc. 432, 1338–1350 (2013). arXiv:1301.5001
  61. 61.
    D. Bard, J.M. Kratochvil, C. Chang, M. May, S.M. Kahn, Y. AlSayyad, Z. Ahmad, J. Bankert, A. Connolly, R.R. Gibson, K. Gilmore, E. Grace, Z. Haiman, M. Hannel, K.M. Huffenberger, J.G. Jernigan, L. Jones, S. Krughoff, S. Lorenz, S. Marshall, A. Meert, S. Nagarajan, E. Peng, J. Peterson, A.P. Rasmussen, M. Shmakova, N. Sylvestre, N. Todd, M. Young, Effect of Measurement errors on predicted cosmological constraints from shear peak statistics with large synoptic survey telescope. Astrophys. J. 774, 49 (2013). arXiv:1301.0830
  62. 62.
    X. Liu, Q. Wang, C. Pan, Z. Fan, Mask effects on cosmological studies with weak-lensing peak statistics. Astrophys. J. 784, 31 (2014). arXiv:1304.2873
  63. 63.
    Y. Utsumi, S. Miyazaki, M.J. Geller, I.P. Dell’Antonio, M. Oguri, M.J. Kurtz, T. Hamana, D.G. Fabricant, Reducing systematic error in weak lensing cluster surveys. Astrophys. J. 786, 93 (2014). arXiv:1304.4656
  64. 64.
    M. Shirasaki, N. Yoshida, T. Hamana, Effect of masked regions on weak-lensing statistics. Astrophys. J. 774, 111 (2013). arXiv:1304.2164
  65. 65.
    M. Shirasaki, N. Yoshida, Statistical and systematic errors in the measurement of weak-lensing minkowski functionals: application to the Canada-France-Hawaii lensing survey. Astrophys. J. 786, 43 (2014). arXiv:1312.5032
  66. 66.
    M. Shirasaki, S. Horiuchi, N. Yoshida, Cross-correlation of cosmic shear and extragalactic gamma-ray background: constraints on the dark matter annihilation cross-section. Phys. Rev. D 90, 063502 (2014). arXiv:1404.5503 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.The University of TokyoTokyoJapan

Personalised recommendations