Advertisement

Thermoelectric Transport from First-Principles—Biphenyl-Based Single-Molecule Junctions

  • Marius Bürkle
  • Fabian Pauly
  • Yoshihiro Asai
Chapter

Abstract

Using first-principles electronic structure methods in conjunction with nonequilibrium Green function (NEGF) techniques, we study the thermoelectric transport through biphenyl-based single-molecule junctions. We show, based on our recently published works and their present extension to include also the electron energy current, that the single-molecule conductance, junction thermopower, and electron thermal conductance strongly depend on the choice of the molecular anchor group and on the geometry of the investigated gold-biphenyl-gold contacts. We compare two different anchor groups, sulfur and cyano. The electron-donating S anchor group gives rise to a positive thermopower, while the electron-withdrawing cyano anchor results in a negative thermopower. For the S-terminated biphenyl a strong variation of the transport coefficients with respect to the binding motif is observed, for CN-terminated biphenyl such variations remain small.

Keywords

High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Transport Coefficient Molecular Junction Electron Thermal Conductance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was partly supported by a FY2012 (P12501) Postdoctoral Fellowship for Foreign Researchers from the Japan Society for Promotion of Science (JSPS) and by a JSPS KAKENHI, i.e. ‘Grant-in-Aid for JSPS Fellows’, grant no. 24·02501.

F.P. gratefully acknowledges financial support from the Carl Zeiss Foundation as well as the collaborative research center of the German science foundation, SFB 767, through project C13.

References

  1. 1.
    Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM (1997) Science 278:252CrossRefGoogle Scholar
  2. 2.
    Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, Löhneysen Hv (2002) Phys Rev Lett 88(17): 176804Google Scholar
  3. 3.
    Xu B, Tao NJ (2003) Science 301:1221CrossRefGoogle Scholar
  4. 4.
    Mishchenko A, Vonlanthen D, Meded V, Bürkle M, Li C, Pobelov IV, Bagrets A, Viljas JK, Pauly F, Evers F, Mayor M, Wandlowski T (2010) Nano Lett 10:156CrossRefGoogle Scholar
  5. 5.
    Mishchenko A, Zotti LA, Vonlanthen D, Bürkle M, Pauly F, Cuevas JC, Mayor M, Wandlowski T (2011) J Am Chem Soc 133:184CrossRefGoogle Scholar
  6. 6.
    Reddy P, Jang S-Y, Segalman RA, Majumdar A (2007) Science 315:1568CrossRefGoogle Scholar
  7. 7.
    Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904CrossRefGoogle Scholar
  8. 8.
    Strange M, Rostgaard C, Häkkinen H, Thygesen KS (2011) Phys Rev B 83:115108CrossRefGoogle Scholar
  9. 9.
    Hybertsen MS, Venkataraman L, Klare JE, Whalley AC, Steigerwald ML, Nuckolls C (2008) J Phys Condens Matter 20:374115CrossRefGoogle Scholar
  10. 10.
    Bürkle M, Viljas JK, Vonlanthen D, Mishchenko A, Schön G, Mayor M, Wandlowski T, Pauly F (2012) Phys Rev B 85:7CrossRefGoogle Scholar
  11. 11.
    Bürkle M, Zotti LA, Viljas JK, Vonlanthen D, Mishchenko A, Wandlowski T, Mayor M, Schön G, Pauly F (2012) Phys Rev B 86:11CrossRefGoogle Scholar
  12. 12.
    Pauly F, Viljas JK, Huniar U, Häfner M, Wohlthat S, Bürkle M, Cuevas JC, Schön G (2008) New J Phys 10:125019CrossRefGoogle Scholar
  13. 13.
    Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Sivan U, Imry Y (1986) Phys Rev B 33:551CrossRefGoogle Scholar
  15. 15.
    Esfarjani K, Zebarjadi M, Kawazoe Y (2006) Phys Rev B 73:8CrossRefGoogle Scholar
  16. 16.
    Müller K-H (2008) J Chem Phys 129:044708CrossRefGoogle Scholar
  17. 17.
    TURBOMOLE:V6.4, TURBOMOLE GmbH Karlsruhe, http://www.turbomole.de. (TURBOMOLE is a development of University of Karlsruhe and Forschungszentrum Karlsruhe 1989–2007, TURBOMOLE GmbH since 2007)
  18. 18.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  19. 19.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  20. 20.
    Schafer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571CrossRefGoogle Scholar
  21. 21.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefGoogle Scholar
  22. 22.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  23. 23.
    Yu M, Bovet N, Satterley CJ, Bengió S, Lovelock KRJ, Milligan PK, Jones RG, Woodruff DP, Dhanak V (2006) Phys Rev Lett 97:166102CrossRefGoogle Scholar
  24. 24.
    Venkataraman L, Klare JE, Tam IW, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nano Lett 6:458CrossRefGoogle Scholar
  25. 25.
    Paulsson M, Datta S (2003) Phys Rev B 67:241403CrossRefGoogle Scholar
  26. 26.
    Hansch C, Leo A, Taft RW (1991) Chem Rev 91:165CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Nanosystem Research Institute (NRI) ‘RICS’National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
  2. 2.Department of PhysicsUniversity of KonstanzConstanceGermany

Personalised recommendations