Advertisement

Extraintestinal Manifestations of H. pylori Infection: Asthma and Allergic Disorders

  • Cheol Min ShinEmail author
Chapter

Abstract

Helicobacter pylori (H. pylori) prevalence decreases while asthma and allergic disorders rapidly increase mainly in Western developed countries. Numerous epidemiological surveys have reported that there is a meaningful trade-off relationship between H. pylori infection and the allergic diseases. Allergic asthma is induced by T cells that secrete Th2 cytokines, such as interleukin (IL)-4 and IL-5. H. pylori infection is thought to not only reinforce Th1 immune responses but also suppress Th2 reactions. According to the recent studies using animal models of allergic airway disease, H. pylori is expected to reduce airway hypersensitivity by directly inducing regulatory T-cell expressions via dendritic cells. As H. pylori prevalence tends to decrease in East Asian countries such as Korea and Japan, mainly among children and adolescents, allergic diseases such as atopic dermatitis, asthma, and allergic rhinitis rapidly increase. Thus, epidemiological surveys on these populations regarding the correlation are warranted in the future.

Keywords

Helicobacter pylori Asthma Allergic disorders 

References

  1. 1.
    Shin CM. Extra-intestinal manifestation of Helicobacter pylori infection: allergic diseases including asthma, atopy and idiopathic urticaria. Korean J Med. 2013;84:774–80.CrossRefGoogle Scholar
  2. 2.
    Thomas JE, Dale A, Harding M, Coward WA, Cole TJ, Weaver LT. Helicobacter pylori colonization in early life. Pediatr Res. 1999;45:218–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Rothenbacher D, Inceoglu J, Bode G, Brenner H. Acquisition of Helicobacter pylori infection in a high-risk population occurs within the first 2 years of life. J Pediatr. 2000;136:744–8.PubMedGoogle Scholar
  4. 4.
    Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355:2226–35.CrossRefPubMedGoogle Scholar
  5. 5.
    Blaser MJ, Chen Y, Reibman J. Does Helicobacter pylori protect against asthma and allergy? Gut. 2008;57:561–7.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Taube C, Müller A. The role of Helicobacter pylori infection in the development of allergic asthma. Expert Rev Respir Med. 2012;6:441–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Thjodleifsson B, Asbjörnsdottir H, Sigurjonsdottir RB, Gíslason D, Olafsson I, Cook E, et al. Seroprevalence of Helicobacter pylori and cagA antibodies in Iceland, Estonia and Sweden. Scand J Infect Dis. 2007;39:683–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Chen Y, Blaser MJ. Inverse associations of Helicobacter pylori with asthma and allergy. Arch Intern Med. 2007;167:821–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Matricardi PM, Rosmini F, Riondino S, Fortini M, Ferrigno L, Rapicetta M, et al. Exposure to foodborne and orofecal microbes versus airborne viruses in relation to atopy and allergic asthma: epidemiological study. BMJ. 2000;320:412–7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tsang KW, Lam WK, Chan KN, Hu W, Wu A, Kwok E, et al. Helicobacter pylori sero-prevalence in asthma. Respir Med. 2000;94:756–9.CrossRefPubMedGoogle Scholar
  11. 11.
    Jarvis D, Luczynska C, Chinn S, Burney P. The association of hepatitis A and Helicobacter pylori with sensitization to common allergens, asthma and hay fever in a population of young British adults. Allergy. 2004;59:1063–7.CrossRefPubMedGoogle Scholar
  12. 12.
    Jun ZJ, Lei Y, Shimizu Y, Dobashi K, Mori M. Helicobacter pylori seroprevalence in patients with mild asthma. Tohoku J Exp Med. 2005;207:287–91.CrossRefPubMedGoogle Scholar
  13. 13.
    Pessi T, Virta M, Adjers K, Karjalainen J, Rautelin H, Kosunen TU, et al. Genetic and environmental factors in the immunopathogenesis of atopy: interaction of Helicobacter pylori infection and IL4 genetics. Int Arch Allergy Immunol. 2005;137:282–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Chen Y, Blaser MJ. Helicobacter pylori colonization is inversely associated with childhood asthma. J Infect Dis. 2008;198:553–60.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Amberbir A, Medhin G, Erku W, Alem A, Simms R, Robinson K, et al. Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin Exp Allergy. 2011;41:1422–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Zevit N, Balicer RD, Cohen HA, Karsh D, Niv Y, Shamir R. Inverse association between Helicobacter pylori and pediatric asthma in a high-prevalence population. Helicobacter. 2012;17:30–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou X, Wu J, Zhang G. Association between Helicobacter pylori and asthma: a meta-analysis. Eur J Gastroenterol Hepatol. 2013;25:460–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang Q, Yu C, Sun Y. The association between asthma and Helicobacter pylori: a meta-analysis. Helicobacter. 2013;18:41–53.CrossRefPubMedGoogle Scholar
  19. 19.
    Martinez FD, Wright AL, Taussig LM, Holberg CJ, Halonen M, Morgan WJ. Asthma and wheezing in the first six years of life. The Group Health Medical Associates. N Engl J Med. 1995;332:133–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Lee JH, Kim N, Chung JI, Kang KP, Lee SH, Park YS, et al. Long-term follow up of Helicobacter pylori IgG serology after eradication and reinfection rate of H. pylori in South Korea. Helicobacter. 2008;13:288–94.CrossRefPubMedGoogle Scholar
  21. 21.
    Haldar P, Pavord ID. Noneosinophilic asthma: a distinct clinical and pathologic phenotype. J Allergy Clin Immunol. 2007;119:1043–52.CrossRefPubMedGoogle Scholar
  22. 22.
    Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, et al. T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med. 2009;180:388–95.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kudo M, Melton AC, Chen C, Engler MB, Huang KE, Ren X, et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat Med. 2012;18:547–54.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lambrecht BN, Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet. 2010;376:835–43.CrossRefPubMedGoogle Scholar
  25. 25.
    Taube C, Duez C, Cui ZH, Takeda K, Rha YH, Park JW, et al. The role of IL-13 in established allergic airway disease. J Immunol. 2002;169:6482–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Locksley RM. Asthma and allergic inflammation. Cell. 2010;140:777–83.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7:887–94.CrossRefPubMedGoogle Scholar
  28. 28.
    Matricardi PM, Rosmini F, Panetta V, Ferrigno L, Bonini S. Hay fever and asthma in relation to markers of infection in the United States. J Allergy Clin Immunol. 2002;110:381–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Braun-Fahrländer C, Riedler J, Herz U, Eder W, Waser M, Grize L, et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med. 2002;347:869–77.CrossRefPubMedGoogle Scholar
  30. 30.
    McLoughlin RM, Mills KH. Influence of gastrointestinal commensal bacteria on the immune responses that mediate allergy and asthma. J Allergy Clin Immunol. 2011;127:1097–107.CrossRefPubMedGoogle Scholar
  31. 31.
    Ly NP, Litonjua A, Gold DR, Celedón JC. Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol. 2011;127:1087–94.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Prescott SL, Macaubas C, Holt BJ, Smallacombe TB, Loh R, Sly PD, et al. Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses toward the Th2 cytokine profile. J Immunol. 1998;160:4730–7.PubMedGoogle Scholar
  33. 33.
    Denning TL, Wang YC, Patel SR, Williams IR, Pulendran B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol. 2007;8:1086–94.CrossRefPubMedGoogle Scholar
  34. 34.
    Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science. 2012;336:489–93.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hill DA, Siracusa MC, Abt MC, Kim BS, Kobuley D, Kubo M, et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med. 2012;18:538–46.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Codolo G, Mazzi P, Amedei A, Del Prete G, Berton G, D’Elios MM, et al. The neutrophil-activating protein of Helicobacter pylori down-modulates Th2 inflammation in ovalbumin-induced allergic asthma. Cell Microbiol. 2008;10:2355–63.CrossRefPubMedGoogle Scholar
  37. 37.
    D’Elios MM, Codolo G, Amedei A, Mazzi P, Berton G, Zanotti G, et al. Helicobacter pylori, asthma and allergy. FEMS Immunol Med Microbiol. 2009;56:1–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Arnold IC, Dehzad N, Reuter S, Martin H, Becher B, Taube C, et al. Helicobacter pylori infection prevents allergic asthma in mouse models through the induction of regulatory T cells. J Clin Invest. 2011;121:3088–93.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Oertli M, Sundquist M, Hitzler I, Engler DB, Arnold IC, Reuter S, et al. DC-derived IL-18 drives Treg differentiation, murine Helicobacter pylori-specific immune tolerance, and asthma protection. J Clin Invest. 2012;122:1082–96.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Arnold IC, Hitzler I, Müller A. The immunomodulatory properties of Helicobacter pylori confer protection against allergic and chronic inflammatory disorders. Front Cell Infect Microbiol. 2012;2:10.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Kao JY, Zhang M, Miller MJ, Mills JC, Wang B, Liu M, et al. Helicobacter pylori immune escape is mediated by dendritic cell-induced Treg skewing and Th17 suppression in mice. Gastroenterology. 2010;138:1046–54.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Singapore 2016

Authors and Affiliations

  1. 1.Department of Internal MedicineSeoul National University College of Medicine, Seoul National University Bundang HospitalSeongnamSouth Korea

Personalised recommendations