Skip to main content

Smart Bioceramics for Orthopedic Applications

  • Chapter
  • First Online:
Innovative Bioceramics in Translational Medicine II

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 18))

Abstract

Smart bioceramics are mostly used to replace or reconstruct bone and joints. They can induce bone formation in hard tissues, and they can be used to increase the success of treating bone nonunion and fracture healing. A delayed union or prolonged healing can occur in certain bone fractures such as in distal tibia, scaphoid of the wrist, and talus of the ankle and in some cases can lead to nonunion fractures. Smart bioceramics can be used to prevent nonunion fractures and enhance the bone regeneration process. The addition of certain elements such as magnesium, zinc, strontium, and boron may enhance the osteoconductive property of bioceramics. They can be used to promote spinal fusion and/or assist implant integration in osteoporotic bones. Surfaces of nano-bioceramics improve osteointegration by increasing the areas available for osteoblast attachment, proliferation, differentiation and extracellular matrix formation. Nano-bioceramics are also biocompatible and may induce bone formation. Smart bioceramics could be osteoinductive when produced by combining them with active signaling molecules and/or cells. The context of this chapter reviews the recent trends on smart bioceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salinas AJ, Esbrit P, Vallet-Regí M (2013) A tissue engineering approach based on the use of bioceramics for bone repair. Biomater Sci 1:40–51

    Google Scholar 

  2. Vallet-Regí M, Ruiz-Hernández E (2011) Bioceramics: from bone regeneration to cancer nanomedicine. Adv Mater 23:5177–5218

    Google Scholar 

  3. Cowin SC, Cardoso L (2015) Blood and interstitial flow in the hierarchical pore space architecture of bone tissue. J Biomech 48:842–854

    Google Scholar 

  4. Renders GA, Mulder L, van Ruijven LJ et al (2007) Porosity of human mandibular condylar bone. J Anat 210:239–248

    Google Scholar 

  5. Baino F, Novajra G, Vitale-Brovarone C (2015) Bioceramics and scaffolds: a winning combination for tissue engineering. Front Bioeng Biotechnol 3:202. https://doi.org/10.3389/fbioe.2015.00202

  6. Hench LL (1998) Biomaterials: a forecast for the future. Biomaterials 19:1419–1423

    Google Scholar 

  7. Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97:514–535

    Google Scholar 

  8. Korkusuz P, Korkusuz F (2003) Hard tissue-biomaterial interactions. In: Yaszemski MJ (ed) Biomaterials in orthopedics, 2nd edn. CRC Press, Boca Raton, pp 1–40

    Google Scholar 

  9. Bommala VK, Krishna MG, Rao CT (2019) Magnesium matrix composites for biomedical applications: A review. J Magnes Alloy 7:72–79

    Google Scholar 

  10. Alizadeh-Osgouei M, Li Y, Wen C (2018) A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater 4:22–36

    Google Scholar 

  11. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K (2017) Biodegradable ceramic-polymer composites for biomedical applications: A review. Mater Sci Eng C Mater Biol Appl 71:1175–1191

    Google Scholar 

  12. Albrektsson T, Johansson C (2001) Osteoinduction, osteoconduction and osseointegration. Eur Spine J 10 Suppl 2:S96-S101

    Google Scholar 

  13. Sushmita VP, Chethan Kumar JS, Hegde C et al (2019) Interaction of dental pulp stem cells in bone regeneration on titanium implant. An in vitro study. J Osseointegration 11:553–560

    Google Scholar 

  14. Korkusuz P, Kose S, Kopru CZ (2016) Biomaterial and stem cell interactions: histological biocompatibility. Curr Stem Cell Res Ther 11:475–486

    Google Scholar 

  15. Kim TI, Jang JH, Kim HW et al (2008) Biomimetic approach to dental implants. Curr Pharm Des 14:2201–2211

    Google Scholar 

  16. Kim SH, Yeon YK, Lee JM et al (2018) Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat Commun 9:1620. https://doi.org/10.1038/s41467-018-03759-y

  17. Lee JM, Chae T, Sheikh FA et al (2016) Three dimensional poly(ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis. Mater Sci Eng C Mater Biol Appl 68:758–767

    Google Scholar 

  18. Köse S, Kankilic B, Gizer M et al (2018) Stem cell and advanced nano bioceramic interactions. Adv Exp Med Biol 1077:317–342

    Google Scholar 

  19. Shekaran A, Garcia AJ (2011) Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering. Biochim Biophys Acta 1810:350–360

    Google Scholar 

  20. Kon T, Cho TJ, Aizawa T (2001) Expression of osteoprotegerin, receptor activator of NF-kappaB ligand (osteoprotegerin ligand) and related proinflammatory cytokines during fracture healing. J Bone Miner Res 16:1004–1014

    Google Scholar 

  21. Debnath S, Yallowitz AR, McCormick J et al (2018) Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature 562:133–139

    Google Scholar 

  22. Marsell R, Einhorn TA (2011) The biology of fracture healing. Injury 42:551–555

    Google Scholar 

  23. Gebraad A, Kornilov R, Kaur S et al (2018) Monocyte-derived extracellular vesicles stimulate cytokine secretion and gene expression of matrix metalloproteinases by mesenchymal stem/stromal cells. FEBS J 285:2337–2359

    Google Scholar 

  24. Lehmann W, Edgar CM, Wang K et al (2005) Tumor necrosis factor alpha (TNF-alpha) coordinately regulates the expression of specific matrix metalloproteinases (MMPS) and angiogenic factors during fracture healing. Bone 36:300–310

    Google Scholar 

  25. Shimizu E, Tamasi J, Partridge NC (2012) Alendronate affects osteoblast functions by crosstalk through EphrinB1-EphB. J Dent Res 91:268–274

    Google Scholar 

  26. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Google Scholar 

  27. Fan H, Guo Z (2020) Bioinspired surfaces with wettability: biomolecule adhesion behaviors. Biomater Sci 8:1502–1535

    Google Scholar 

  28. Ferrari M, Cirisano F, Morán MC (2019) Mammalian cell behavior on hydrophobic substrates: influence of surface properties. Colloids Interfaces 3:48. https://doi.org/10.3390/colloids3020048

  29. Menzies KL, Jones L (2010) The impact of contact angle on the biocompatibility of biomaterials. Optom Vis Sci 87:387–399

    Google Scholar 

  30. Choi AH, Cazalbou S, Ben-Nissan B (2015) Nanobiomaterial coatings in dentistry. In: Deb S (ed) Biomaterials for oral and craniomaxillofacial applications. Frontiers of oral biology series, vol 17. Karger Publisher, Basel, pp 49–61

    Google Scholar 

  31. Kämmerer TA, Palarie V, Schiegnitz E et al (2017) A biphasic calcium phosphate coating for potential drug delivery affects early osseointegration of titanium implants. J Oral Pathol Med 46:61–66

    Google Scholar 

  32. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510

    Google Scholar 

  33. Asri RI, Harun WS, Hassan MA et al (2016) A review of hydroxyapatite-based coating techniques: Sol-gel and electrochemical depositions on biocompatible metals. J Mech Behav Biomed Mater 57:95–108

    Google Scholar 

  34. Chang HH, Yeh CL, Wang YL et al (2020) Neutralized dicalcium phosphate and hydroxyapatite biphasic bioceramics promote bone regeneration in critical peri-implant bone defects. Materials 13:823. https://doi.org/10.3390/ma13040823

  35. Zafar MJ, Zhu D, Zhang Z (2019) 3D Printing of bioceramics for bone tissue engineering. Materials 12:3361. https://doi.org/10.3390/ma12203361

  36. Daculsi G (2015) Smart scaffolds: the future of bioceramic. J Mater Sci Mater Med 26:154. https://doi.org/10.1007/s10856-015-5482-7

  37. Tian Y, Lu T, He F et al (2018) β-tricalcium phosphate composite ceramics with high compressive strength, enhanced osteogenesis and inhibited osteoclastic activities. Colloids Surf B Biointerfaces 167:318–327

    Google Scholar 

  38. Bouler JM, Pilet P, Gauthier O et al (2017) Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater 53:1–12

    Google Scholar 

  39. Parent M, Baradari H, Champion E et al (2017) Design of calcium phosphate ceramics for drug delivery applications in bone diseases: A review of the parameters affecting the loading and release of the therapeutic substance. J Control Release 252:1–17

    Google Scholar 

  40. Shuai C, Li P, Liu J et al (2013) Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Mater Charact 77:23–31

    Google Scholar 

  41. Schmidleithner C, Malferarri S, Palgrave R et al (2019) Application of high resolution DLP stereolithography for fabrication of tricalcium phosphate scaffolds for bone regeneration. Biomed Mater 14:045018. https://doi.org/10.1088/1748-605x/ab279d

  42. Łączka M, Cholewa-Kowalska K, Osyczka AM (2016) Bioactivity and osteoinductivity of glasses and glassceramics and their material determinants. Ceram Int 42:14313–14325

    Google Scholar 

  43. Hench LL (2006) The story of Bioglass. J Mater Sci Mater Med 17:967–978

    Google Scholar 

  44. Huang J (2017) Design and Development of Ceramics and Glasses. In: Vishwakarma A, Karp JM (eds) Biology and Engineering of Stem Cell Niches. Academic Press, Massachusetts, p 315–329

    Google Scholar 

  45. Day RM (2005) Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng 11:768–777

    Google Scholar 

  46. Gizer M, Köse S, Karaosmanoglu B et al (2020) The effect of boron-containing nano-hydroxyapatite on bone cells. Biol Trace Elem Res 193:364–376

    Google Scholar 

  47. Abou Neel EA, Pickup DM, Valappil SP et al (2009) Bioactive functional materials: A perspective on phosphate-based glasses. J Mater Chem 19:690–701

    Google Scholar 

  48. Gerhardt LC, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3:3867–3910

    Google Scholar 

  49. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486

    Google Scholar 

  50. Li R, Clark AE, Hench LL (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2:231–239

    Google Scholar 

  51. Mala R, Ruby Celsia AS (2018) Bioceramics in orthopaedics: A review. In: Thomas S, Balakrishnan P, Sreekala MS (eds) Fundamental biomaterials: ceramics. Woodhead Publishing Series in Biomaterials. Woodhead Publishing, Cambridge, pp 195–221

    Google Scholar 

  52. Arcos D, Izquierdo-Barba I, Vallet-Regí M (2009) Promising trends of bioceramics in the biomaterials field. J Mater Sci Mater Med 20:447–455

    Google Scholar 

  53. Ojansivu M, Vanhatupa S, Björkvik L et al (2015) Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater 21:190–203

    Google Scholar 

  54. Saravanapavan P, Hench LL (2001) Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J Biomed Mater Res 54:608–618

    Google Scholar 

  55. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Google Scholar 

  56. Shi M, Chang J, Wu C (2016) Bioactive glasses: advancing from micro to nano and its potential application. In: Marchi J (ed) Biocompatible glasses. Advanced structured materials, vol 53. Springer, Cham, pp 147–181

    Google Scholar 

  57. Yuan H, de Bruijn JD, Zhang X et al (2001) Bone induction by porous glass ceramic made from Bioglass (45S5). J Biomed Mater Res 58:270–276

    Google Scholar 

  58. Lee JH, Rim NG, Jung HS et al (2010) Control of osteogenic differentiation and mineralization of human mesenchymal stem cells on composite nanofibers containing poly[lactic-co-(glycolic acid)] and hydroxyapatite. Macromol Biosci 10:173–182

    Google Scholar 

  59. Zhou H, Lawrence JG, Bhaduri SB (2012) Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review. Acta Biomater 8:1999–2016

    Google Scholar 

  60. Lock J, Nguyen TY, Liu H (2012) Nanophase hydroxyapatite and poly(lactide-co-glycolide) composites promote human mesenchymal stem cell adhesion and osteogenic differentiation in vitro. J Mater Sci Mater Med 23:2543–2552

    Google Scholar 

  61. Li Y, Zhou J, Pavanram P et al (2018) Additively manufactured biodegradable porous magnesium. Acta Biomater 67:378–392

    Google Scholar 

  62. He SY, Sun Y, Chen MF et al (2011) Microstructure and properties of biodegradable β-TCP reinforced Mg-Zn-Zr composites. T Nonferr Metal Soc 21:814–819

    Google Scholar 

  63. Qi T, Weng J, Yu F et al (2021) Insights into the role of magnesium ions in affecting osteogenic differentiation of mesenchymal stem cells. Biol Trace Elem Res 199:559–567

    Google Scholar 

  64. Engstrand T, Kihlström L, Neovius E et al (2014) Development of a bioactive implant for repair and potential healing of cranial defects. J Neurosurg 120:273–277

    Google Scholar 

  65. Regenerative bone defects using new biomedical engineering approaches, REBORNE 2010–2014, 7th PCRD EC program. www.reborne.org

  66. Bal Z, Kaito T, Korkusuz F et al (2020) Bone regeneration with hydroxyapatite-based biomaterials. Emergent Mater 3:521–544

    Google Scholar 

  67. Bal Z, Kushioka J, Kodama J et al (2020) BMP and TGFβ use and release in bone regeneration. Turk J Med Sci 50:1707–1722

    Google Scholar 

  68. Heness G, Ben-Nissan B (2004) Innovative Bioceramics. Mater Forum 27:104–114

    Google Scholar 

  69. Giannoudis PV, Einhorn TA, Marsh D (2007) Fracture healing: the diamond concept. Injury 38:S3-S6

    Google Scholar 

  70. Ginebra MP, Espanol M, Maazouz Y et al (2018) Bioceramics and bone healing. EFORT Open Rev 3:173–183

    Google Scholar 

  71. Chen FM, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Google Scholar 

  72. Daculsi G, Miramond T, Borget P (2012) Smart Calcium Phosphate Bioceramic Scaffold for Bone Tissue Engineering. Key Eng Mater 529–530:19-23

    Google Scholar 

  73. Manzano M, Lozano D, Arcos D et al (2011) Comparison of the osteoblastic activity conferred on Si-doped hydroxyapatite scaffolds by different osteostatin coatings. Acta Biomater 7:3555–3562

    Google Scholar 

  74. Coathup MJ, Hing KA, Samizadeh S et al (2012) Effect of increased strut porosity of calcium phosphate bone graft substitute biomaterials on osteoinduction. J Biomed Mater Res A 100:1550–1555

    Google Scholar 

  75. Albulescu R, Popa AC, Enciu AM et al (2019) Comprehensive in vitro testing of calcium phosphate-based bioceramics with orthopedic and dentistry applications. Materials 12:3704

    Google Scholar 

  76. Eliaz N, Metoki N (2017) Calcium phosphate bioceramics: a review of their history, structure, properties, coating technologies and biomedical applications. Materials 10:334

    Google Scholar 

  77. Frieß W, Warner J. (2002) Biomedical applications. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids. Wiley‐VCH Verlag GmbH, Weinheim, pp 2923–2970

    Google Scholar 

  78. Chen Y, Frith JE, Dehghan-Manshadi A et al (2017) Mechanical properties and biocompatibility of porous titanium scaffolds for bone tissue engineering. J Mech Behav Biomed Mater 75:169–174

    Google Scholar 

  79. Yuan L, Ding S, Wen C (2018) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review. Bioact Mater 4:56–70

    Google Scholar 

  80. Zaharin HA, Abdul Rani AM, Azam FI et al (2018) Effect of Unit Cell Type and Pore Size on Porosity and Mechanical Behavior of Additively Manufactured Ti6Al4V Scaffolds. Materials 11:2402

    Google Scholar 

  81. Zhu L, Luo D, Liu Y (2020) Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 12:6. https://doi.org/10.1038/s41368-020-0073-y

  82. Xia L, Zhang N, Wang X et al (2016) The synergetic effect of nano-structures and silicon-substitution on the properties of hydroxyapatite scaffolds for bone regeneration. J Mater Chem B 4:3313–3323

    Google Scholar 

  83. Wu L, Zhou C, Zhang B, et al (2020) Construction of biomimetic natural wood hierarchical porous-structure bioceramic with micro/nanowhisker coating to modulate cellular behavior and osteoinductive activity. ACS Appl Mater Interfaces 12:48395–48407

    Google Scholar 

  84. Shepherd JH, Shepherd DV, Best SM (2012) Substituted hydroxyapatites for bone repair. J Mater Sci Mater Med 23:2335–2347

    Google Scholar 

  85. Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231

    Google Scholar 

  86. Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110

    Google Scholar 

  87. Patel N, Best SM, Bonfield W et al (2002) A comparative study on the in vivo behavior of hydroxyapatite and silicon substituted hydroxyapatite granules. J Mater Sci Mater Med 13:1199–1206

    Google Scholar 

  88. Munir G, Koller G, Di Silvio L et al (2011) The pathway to intelligent implants: osteoblast response to nano silicon-doped hydroxyapatite patterning. J R Soc Interface 8:678–688

    Google Scholar 

  89. Wang W, Yeung KWK (2017) Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact Mater 2:224–247

    Google Scholar 

  90. Ratnayake JTB, Mucalo M, Dias GJ (2017) Substituted hydroxyapatites for bone regeneration: A review of current trends. J Biomed Mater Res B Appl Biomater 105:1285–1299

    Google Scholar 

  91. Geng Z, Cheng Y, Ma L et al (2018) Nanosized strontium substituted hydroxyapatite prepared from egg shell for enhanced biological properties. J Biomater Appl 32:896–905

    Google Scholar 

  92. Zhu XD, Zhang HJ, Fan HS et al (2010) Effect of phase composition and microstructure of calcium phosphate ceramic particles on protein adsorption. Acta Biomater 6:1536–1541

    Google Scholar 

  93. Botelho CM, Lopes MA, Gibson IR et al (2002) Structural analysis of Si-substituted hydroxyapatite: zeta potential and X-ray photoelectron spectroscopy. J Mater Sci Mater Med 13:1123–1127

    Google Scholar 

  94. Ke D, Tarafder S, Vahabzadeh S et al (2019) Effects of MgO, ZnO, SrO, and SiO2 in tricalcium phosphate scaffolds on in vitro gene expression and in vivo osteogenesis. Mater Sci Eng C Mater Biol Appl 96:10–19

    Google Scholar 

  95. Banerjee SS, Tarafder S, Davies NM et al (2010) Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics. Acta Biomater 6:4167–4174

    Google Scholar 

  96. Chou J, Hao J, Hatoyama H et al (2015) Effect of biomimetic zinc-containing tricalcium phosphate (Zn-TCP) on the growth and osteogenic differentiation of mesenchymal stem cells. J Tissue Eng Regen Med 9:852–858

    Google Scholar 

  97. Tunçay EÖ, Demirtaş TT, Gümüşderelioğlu M (2017) Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds. J Trace Elem Med Biol 40:72–81

    Google Scholar 

  98. Alidadi S (2020) Nanoscale bioceramics in bone tissue engineering- an overview. Indian J Ver Sci Biotechnol 16:7–11

    Google Scholar 

  99. Zheng H, Tian Y, Gao Q et al (2020) Hierarchical micro-nano topography promotes cell adhesion and osteogenic differentiation via integrin α2-PI3K-AKT signaling axis. Front Bioeng Biotechnol 8:463

    Google Scholar 

  100. Yin C, Zhang Y, Cai Q et al (2017) Effects of the micro-nano surface topography of titanium alloy on the biological responses of osteoblast. J Biomed Mater Res A 105:757–769

    Google Scholar 

  101. Bartkowiak A, Suchanek K, Menaszek E et al (2018) Biological effect of hydrothermally synthesized silica nanoparticles within crystalline hydroxyapatite coatings for titanium implants. Mater Sci Eng C Mater Biol Appl 92:88–95

    Google Scholar 

  102. Sirin HT, Vargel I, Kutsal T et al (2016) Ti implants with nanostructured and HA-coated surfaces for improved osseointegration. Artif Cells Nanomed Biotechnol 44:1023–1030

    Google Scholar 

  103. Choi AH, Ben-Nissan B (2017) Calcium phosphate nanocomposites for biomedical and dental applications: recent developments. In: Thakur VK, Thakur MK, Kessler MR (eds) Handbook of composites from renewable materials. John Wiley and Sons, Inc, New Jersey, p 423–450

    Google Scholar 

  104. Fujino S, Tokunaga H, Saiz E et al (2004) Fabrication and characterization of bioactive glass coatings on Co-Cr implant alloys. Mater Trans 45:1147–1151

    Google Scholar 

  105. Drnovšek N, Novak S, Dragin U et al (2012) Bioactive glass enhances bone ingrowth into the porous titanium coating on orthopaedic implants. Int Orthop 36:1739–1745

    Google Scholar 

  106. Vitale-Brovarone C, Baino F, Tallia F et al (2012) Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J Mater Sci Mater Med 23:2369–2380

    Google Scholar 

  107. Ekin O, Calis M, Aliyev A et al (2916) Poly(L-Lactide)/Poly(ε-Caprolactone) and collagen/β-tricalcium phosphate scaffolds for the treatment of critical-sized rat alveolar defects: a microtomographic, molecular-biological, and histological study. Cleft Palate Craniofac J 53:453–463

    Google Scholar 

  108. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Google Scholar 

  109. Kankilic B, Dede EC, Korkusuz P et al (2017) Apatites for orthopedic applications. In: Kaur G (ed) Clinical applications of biomaterials. Springer, Cham, pp 65–90

    Google Scholar 

  110. Korkusuz F, Timuçin M, Korkusuz P (2014) Nanocrystalline apatite-based biomaterials and stem cells in orthopaedics. In: Ben-Nissan B. (ed) Advances in calcium phosphate biomaterials. Springer series in biomaterials science and engineering, vol 2. Springer, Heidelberg, pp 373–390

    Google Scholar 

  111. Ben-Nissan B, Pezzotti G (2002) Bioceramics: processing routes and mechanical evaluation. J Ceram Soc Jpn 110:601–608

    Google Scholar 

  112. Lu M, Liao J, Dong J et al (2016) An effective treatment of experimental osteomyelitis using the antimicrobial titanium/silver-containing nHP66 (nano-hydroxyapatite/polyamide-66) nanoscaffold biomaterials. Sci Rep 6:39174

    Google Scholar 

  113. Wu C, Chang J (2014) Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J Control Release 193:282–295

    Google Scholar 

  114. Naik MN, Murthy RK, Honavar SG (2007) Comparison of vascularization of Medpor and Medpor-Plus orbital implants: a prospective, randomized study. Ophthalmic Plast Reconstr Surg 23:463–467

    Google Scholar 

  115. Sadiasa A, Sarkar SK, Franco RA et al (2014) Bioactive glass incorporation in calcium phosphate cement-based injectable bone substitute for improved in vitro biocompatibility and in vivo bone regeneration. J Biomater Appl 28:739–756

    Google Scholar 

  116. Liu H, Li H, Cheng W et al (2006) Novel injectable calcium phosphate/chitosan composites for bone substitute materials. Acta Biomater 2:557–565

    Google Scholar 

  117. No YJ, Roohani-Esfahani SI, Zreiqat H (2014) Nanomaterials: the next step in injectable bone cements. Nanomedicine 9:1745–1764

    Google Scholar 

  118. Xu Q, Liang J, Xue H et al (2020) Novel injectable and self-setting composite materials for bone defect repair. Sci China Mater 63:876–887

    Google Scholar 

  119. Huang Z, Feng Q, Yu B et al (2011) Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Mater Sci Eng C 31:683–687

    Google Scholar 

  120. Xu HH, Weir MD, Simon CG (2008) Injectable and strong nano-apatite scaffolds for cell/growth factor delivery and bone regeneration. Dent Mater 24:1212–1222

    Google Scholar 

  121. Malik QUA, Iftikhar S, Zahid S et al (2020) Smart injectable self-setting bioceramics for dental applications. Mater Sci Eng C Mater Biol Appl 113:110956

    Google Scholar 

Download references

Acknowledgements

This study was supported by the cooperation of Scientific and Technological Research Council of Turkey (Grant agreement number 120N943), and National Research Foundation of Korea (Grant agreement number 2020K2A9A1A06108513).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Depboylu, F.N., Korkusuz, P., Yasa, E., Korkusuz, F. (2022). Smart Bioceramics for Orthopedic Applications. In: Choi, A.H., Ben-Nissan, B. (eds) Innovative Bioceramics in Translational Medicine II. Springer Series in Biomaterials Science and Engineering, vol 18. Springer, Singapore. https://doi.org/10.1007/978-981-16-7439-6_8

Download citation

Publish with us

Policies and ethics