Skip to main content

Use of Biostimulants for Improving Abiotic Stress Tolerance in Brassicaceae Plants

  • Chapter
  • First Online:
The Plant Family Brassicaceae

Abstract

The present climatic change is depleting natural resources and exerting a negative impact on the crop production. Moreover, modern agriculture is shifting toward organic environment amicable and everlasting systems to improve yield as well as crop quality without increasing the inputs. To achieve sustainability, species-specific breeding program is going on, which is time-consuming. Contrary an improved cultivar from breeding program may not be tolerant of the abiotic stresses; if so, may tolerate one or two specific abiotic stress conditions. In this context, exogenous application of phytoprotectants to enhance abiotic stress tolerance is popular among the scientific community for the last two decades. But, modern agriculture requires not only abiotic stress protection, but also need a low-cost improvement in plant performance within a shorter duration with high-quality yield. Accordingly, biostimulants could be an excellent and viable alternative in this condition, which are capable to enhance the growth of plants, improve the nutrient uptake, increase tolerance to biotic and abiotic stresses, and expand crop quality traits along with a good yield. In leafy vegetables, biostimulants increased root growth, photosynthetic pigments, and antioxidant potential, which further upregulated plant growth. A large number of research articles already reported about the biostimulation of crops using various substances and microorganisms. But still, there are controversies regarding the definition of biostimulants. Moreover, for developing a science-based biostimulants industry, the functional and biological basis of the biostimulants should be elucidated. In addition, proper regulations for controlling these compounds are also a prerequisite. For example, the European Union (EU) already has drawn a line between biostimulants and other plant growth-related chemicals such as pesticides or biocontrol agents and fertilizers. In this chapter, we overviewed the definition and main categories of biostimulants. Moreover, the future prospects, opportunities, and challenges of biostimulants are also discussed highlighting Brassicaceae crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AAPFCO (Association of American Plant Food Control Officials Inc.) (2012) Stabilized fertilizer. Official Publication No. 65. West lafayette, Ind.: AAPFCO

    Google Scholar 

  • Aguado-Santacruz GA, Moreno-Gómez B, Rascón-Cruz Q, Aguirre-Mancilla C, Espinosa-Solís JA, González-Barriga CD (2014) Biofertilizers as complements to synthetic and organic fertilization. In: López-Valdes F, Fernández-Luqueno F (eds) Components, uses in agriculture and environmental impacts. Nova Science Publishers Inc, New York, US pp 155–180

    Google Scholar 

  • Aira M, Gómez-Brandón M, Lazcano C, Bååth E, Domïnguez J (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biol Biochem 42:2276–2281

    CAS  Google Scholar 

  • Alam MM, Hayat S, Ali B, Ahmad A (2007) Effect of 28-homobrassinolide treatment on nickel toxicity in Brassica juncea. Photosynthetica 45(1):139–142

    Google Scholar 

  • Ali B, Xu X, Gill RA, Yang S, Ali S, Tahir M, Zhou W (2014) Promotive role of 5-aminolevulinic acid on mineral nutrients and antioxidative defense system under lead toxicity in Brassica napus. Ind Crops Prod 52:617–626

    CAS  Google Scholar 

  • Anee TI, Nahar K, Rahman A, Mahmud JA, Bhuiyan TF, Alam MU, Fujita M, Hasanuzzaman M (2019) Oxidative damage and antioxidant defense in Sesamum indicum after different waterlogging durations. Plants 8:196. https://doi.org/10.3390/plants8070196

    Article  CAS  PubMed Central  Google Scholar 

  • Aremu AO, Masondo NA, Rengasamy KR, Amoo SO, Gruz J, Bíba O, Šubrtová M, Pěnčík A, Novák O, Doležal K, Van Staden J (2015) Physiological role of phenolic biostimulants isolated from brown seaweed Ecklonia maxima on plant growth and development. Planta 241:1313–1324

    CAS  PubMed  Google Scholar 

  • Ashraf M (2009) Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotech Adv 27:84–93

    CAS  Google Scholar 

  • Ashraf MA (2012) Waterlogging stress in plants: A review. Afr J Agril Res 7:1976–1981

    Google Scholar 

  • Bano S, Ashraf M, Akram NA, Al-Qurainy F (2012) Regulation in some vital physiological attributes and antioxidative defense system in carrot (Daucus carota L.) under saline stress. J Appl Bot Food Qual Angew Bot 85:105–115

    CAS  Google Scholar 

  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015) Seaweed extracts as biostimulants in horticulture. Sci Hortic 196:39–48

    CAS  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69:2753–2758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan TF, Ahamed KU, Nahar K, Mahmud JA, Bhuyan MHMB, Anee TI, Fujita M, Hasanuzzaman M (2019) Mitigation of PEG-induced drought stress in rapeseed (Brassica rapa L.) by exogenous application of osmolytes. Biocatal Agric Biotechnol 20:101197. https://doi.org/10.1016/j.bcab.2019.101197

  • Billard V, Etienne P, Jannin L, Garnica M, Cruz F, Garcia-Mina JM, Yvin JC, Ourry A (2014) Two biostimulants derived from algae or humic acid induce similar responses in the mineral content and gene expression of winter oilseed rape (Brassica napus L.). J Plant Growth Regul 33:305–316

    CAS  Google Scholar 

  • Bulgari R, Cocetta G, Trivellini A, Vernieri P, Ferrante A (2015) Biostimulants and crop responses: a review. Biol Agric Hort 31:1–17

    Google Scholar 

  • Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. https://doi.org/10.3390/agronomy9060306

    Article  CAS  Google Scholar 

  • Bybordi A (2016) Influence of zeolite, selenium and silicon upon some agronomic and physiologic characteristics of canola grown under salinity. Commun Soil Sci Plant Anal 47:832–850

    CAS  Google Scholar 

  • Calvo P, Nelson L, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41

    CAS  Google Scholar 

  • Canellas LP, Olivares FL, Aguiar NO, Jones DL, Nebbioso A, Mazzei P, Piccolo A (2015) Humic and fulvic acids as biostimulants in horticulture. Sci Hortic 196:15–27

    CAS  Google Scholar 

  • Cao Y, Luo Q, Tian Y, Meng F (2017) Physiological and proteomic analyses of the drought stress response in Amygdalus mira (Koehne) Yü et Lu roots. BMC Plant Biol 17:53–69

    PubMed  PubMed Central  Google Scholar 

  • Capon SJ, James CS, Williams L, Quinn GP (2009) Responses to flooding and drying in seedlings of a common Australian desert floodplain shrub: Muehlenbeckia florulenta Meisn. Environ Exp Bot 66:178–185

    Google Scholar 

  • Chang WP, Huang L, Shen M, Webster C, Burlingame AL, Roberts JK (2000) Protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low oxygen environment and identification of protein by mass spectrometry. Plant Physiol 122:295–318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen THH, Murata N (2011) Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant, Cell Environ 34:1–20

    Google Scholar 

  • Chojnacka K, Michalak I, Dmytryk A, Wilk R, Gorecki H (2015) Innovative natural plant growth biostimulants. In: Sinha S, Pant KK, Bajpai S, Govil JN (eds) Fertilizer technology: II Biofertilizer, Studium Press LLC, Houston, TX, US, pp 451–489

    Google Scholar 

  • Choudhary SP, Kanwar M, Bhardwaj R, Yu J-Q, Tran L-SP (2012) Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS ONE 7(3):e33210. https://doi.org/10.1371/journal.pone.0033210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colla G, Rouphael Y, Leonardi C, Bie Z (2010) Role of grafting in vegetable crops grown under saline conditions. Sci Hortic 127:147–155

    Google Scholar 

  • Colla G, Nardi S, Cardarelli M, Ertani A, Lucini L, Canaguier R, Rouphael Y (2015) Protein hydrolysates as biostimulants in horticulture. Sci Hortic 196:28–38

    CAS  Google Scholar 

  • Dobbelaere S, Croonenborghs A, Thys A, Broek AV, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164

    CAS  Google Scholar 

  • Drobek M, Frac M, Cybulska J (2019) Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress—a review. Agronomy 9:335. https://doi.org/10.3390/agronomy9060335

    Article  CAS  Google Scholar 

  • du Jardin P (2012) The science of plant biostimulants—a bibliographic analysis. Ad hoc Study Report to the European Commission DG ENTR. http://ec.europa.eu/enterprise/sectors/chemicals/files/fertilizers/finaLreport_bio_2012_en.pdf.

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Google Scholar 

  • EBIC (2012) European biostimulants industry council and biostimulants in brief. http://www.biostimulants.eu/.

  • Ehsan S, Ali S, Noureen S, Mehmood K, Farid M, Ishaque W, Shakoo MB, Rizwan M (2014) Citric acid assisted phytoremediation of Cd by Brassica napus L. Ecotoxicol Environ Saf 106:164–172

    CAS  PubMed  Google Scholar 

  • Else MA, Coupland D, Dutton L, Jackson MB (2001) Decreased root hydraulic conductivity reduces leaf water potential, initiates stomatal closure and slows leaf expansion in flooded plants of castor oil (Riccinus communis) despite diminished delivery of ABA from the roots to shoots in the xylem sap. Physiol Plant 111:46–54

    CAS  Google Scholar 

  • Ertani A, Pizzeghello D, Francioso O, Sambo P, Sanchez-Cortes S, Nardi S (2014) Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: chemical and metabolomic approaches. Front Plant Sci 5:375. https://doi.org/10.3389/fpls.2014.00375

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    CAS  Google Scholar 

  • Farooq MA, Gill RA, Islam F, Ali B, Liu H, Xu J, He S, Zhou W (2016) Methyl jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7:468. https://doi.org/10.3389/fpls.2016.00468

    Article  PubMed  PubMed Central  Google Scholar 

  • Farshidi M, Abdolzadeh A, Sadeghipour HR (2012) Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiol Plant 34:1779–1788

    CAS  Google Scholar 

  • Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545

    CAS  PubMed  Google Scholar 

  • Filatov VP (1944) Tissue therapy in ophthalmology. Am Rev Sov Med 2:53–66

    Google Scholar 

  • Fiorentino N, Ventorino V, Woo SL, Pepe O, De Rosa A, Gioia L, Romano I, Lombardi N, Napolitano M, Rouphael Y (2018) Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake efficiency, yield and nutritional quality of leafy vegetables. Front Plant Sci 9:743. https://doi.org/10.3389/fpls.2018.00743

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores P, Botella MÁ, Cerdá A, Martínez V (2004) Influence of nitrate level on nitrate assimilation in tomato (Lycopersicon esculentum) plants under saline stress. Can J Bot 82:207–213

    Google Scholar 

  • Gajc-Wolska J, Spiżewski T, Grabowska A (2013) The effect of seaweed extracts on the yield and quality parameters of broccoli (Brassica oleracea var. cymosa l.) in open field production. Acta Hortic 1009:83–89

    Google Scholar 

  • Gómez-Merino FC, Trejo-Téllez LI (2015) Biostimulant activity of phosphite in horticulture. Sci Hortic 196:82–90

    Google Scholar 

  • Goñi O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S (2016) Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agric Food Chem 64:2980–2989

    PubMed  Google Scholar 

  • Gugala M, Sikorska A, Findura P, Kapela K, Malaga-Tobola U, Zarzecka K, Domanski L (2018) Effect of selected plant preparations containing biologically active compounds on winter rape (Brassica napus L.) yielding. Appl Ecol Env Res 17:2779–2789

    Google Scholar 

  • Habibi G (2014) Silicon supplementation improves drought tolerance in canola plants. Russ J Plant Physiol 61:784–791

    CAS  Google Scholar 

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Modarres-Sanavy SAM (2012) A comparison between foliar application and seed inoculation of biofertilizers on canola (Brassica napus L.) grown under waterlogged conditions. Aust J Crop Sci 6:1435–1440

    CAS  Google Scholar 

  • Habibzadeh F, Sorooshzadeh A, Pirdashti H, Modarres-Sanavy SAM (2013) Alleviation of waterlogging damage by foliar application of nitrogen compounds and tricyclazole in canola. Aust J Crop Sci 7:401–406

    CAS  Google Scholar 

  • Halpern M, Bar-Tal A, Ofek M, Minz D, Muller T, Yermiyahu U (2015) The use of biostimulants for enhancing nutrient uptake. In: Sparks DL (ed) Advances in Agronomy. Academic press, Cambridge, pp 141–174

    Google Scholar 

  • Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2011) Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biol Trace Elem Res 143:1704–1721

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Hossain MA, da Silva JAT, Fujita M (2012a) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop Stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316

    Google Scholar 

  • Hasanuzzaman M, Hossain MA, Fujita M (2012b) Exogenous selenium pretreatment protects rapeseed from cadmium-induced oxidative stress by upregulating antioxidant defense and methylglyoxal detoxification systems. Biol Trace Elem Res 149:248–261

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam M, Roychowdhury R, Fujita M (2013a) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujit M (2013b) Extreme temperature responses, oxidative stress and antioxidant defense in plants. In: Vahdati K, Leslie C (eds) Abiotic stress—plant responses and applications in agriculture. InTech Open, Rijeka, pp 169–205

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014a) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium-supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Fujita M (2014b) Silicon and selenium: two vital trace elements that confer abiotic stress tolerance to plants. In: Ahmad P, Rasool S (eds) Emerging technologies and management of crop stress tolerance. Academic Press, Cambridge, pp 377–422

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Mahmud JA, Ahmad P, Fujita M (2016) Nitric oxide: a Jack of all trades for drought stress tolerance in plants. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach. Wiley, West Sussex, pp 628–648

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Anee TI, Parvin K, Fujita M (2017a) Nitric oxide pretreatment enhances antioxidant defense and glyoxalase systems to confer PEG-induced oxidative stress in rapeseed. J Plant Interact 12:323–331

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Hossain MS, Mahmud JA, Rahman A, Inafuku M, Oku H, Fujita M (2017b) Coordinated actions of glyoxalase and antioxidant defense systems in conferring abiotic stress tolerance in plants. Int J Mol Sci 18:200. https://doi.org/10.3390/ijms18010200

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017c) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061. https://doi.org/10.3389/fpls.2017.01061

  • Hasanuzzaman M, Nahar K, Anee TI, Fujita M (2017d) Exogenous silicon attenuates cadmium-induced oxidative stress in Brassica napus L. by modulating AsA-GSH pathway and glyoxalase system. Front Plant Sci 8:1061. https://doi.org/10.3389/fpls.2017.01061

  • Hasanuzzaman M, Hossain MS, Bhuyan MB, Mahmud JA, Nahar K, Fujita M (2018a) The role of sulfur in plant abiotic stress tolerance: molecular interactions and defense mechanisms. In: Hasanuzzaman M, Fujita M, Oku H, Nahar K, Hawrylak-Nowak B (eds) Plant nutrients and abiotic stress tolerance. Springer, Singapore, pp 221–252

    Google Scholar 

  • Hasanuzzaman M, Nahar K, Anee TI, Khan MIR, Fujita M (2018b) Silicon-mediated regulation of antioxidant defense and glyoxalase systems confers drought stress tolerance in Brassica napus L. S Afr J Bot 115:50–57

    CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Rohman MM, Anee TI, Huang Y, Fujita M (2018c) Exogenous silicon protects Brassica napus plants from salinity-induced oxidative stress through the modulation of AsA-GSH pathway, thiol-dependent antioxidant enzymes and glyoxalase systems. Gesunde Pflanzen 70:185–194

    CAS  Google Scholar 

  • Hasanuzzaman M, Bhuyan MHMB, Anee TI, Parvin K, Nahar K, Mahmud JA, Fujita M (2019a) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8:384. https://doi.org/10.3390/antiox8090384

    Article  CAS  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Nahar K, Khan MIR, Mahmud JA, Alam MM, Fujita M (2019b) Regulation of reactive oxygen species metabolism and glyoxalase systems by exogenous osmolytes confers thermotolerance in Brassica napus. Gesunde Pflanzen. https://doi.org/10.1007/s10343-019-00476-4

    Article  Google Scholar 

  • Hashemi A, Abdolzadeh A, Sadeghipour HR (2010) Beneficial effects of silicon nutrition in alleviating salinity stress in hydroponically grown canola, Brassica napus L., plants. Soil Sci Plant Nutr 56:244–253

    CAS  Google Scholar 

  • Hawrylak-Nowak B, Hasanuzzaman M, Wójcik M (2019) Biostimulation and biofortification of crop plants–new challenges for modern agriculture. Acta Agrobot 72:1777. https://doi.org/10.5586/aa.1777

    Article  Google Scholar 

  • Hervé JJ (1994) Biostimulant, a new concept for the future and prospects offered by chemical synthesis and biotechnologies. Comptes-Rendus del’Académie d’Agriculture de France 80:91–102

    Google Scholar 

  • Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM (2018) Quinoa abiotic stress responses: a review. Plants 7:106. https://doi.org/10.3390/plants7040106

    Article  CAS  PubMed Central  Google Scholar 

  • Hossain MS, Hasanuzzaman M, Sohag MMH, Bhuyan MHMB, Fujita M (2019) Acetate-induced modulation of ascorbate: glutathione cycle and restriction of sodium accumulation in shoot confer salt tolerance in Lens culinaris Medik. Physiol Mol Biol Plants 25:443–455

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y-H, Yu J-Q, Chen Z (2010) Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai K, Kuramochi H, Takeuchi Y (2004) Effects of 5-aminolevulinic acid, iron, and urea on growth of Japanese lawngrass seedlings. The 33rd annual meeting of the JSTS, pp. 68−69

    Google Scholar 

  • Iwai K, Saito A, van Leeuwen J, Tanaka T, Takeuchi Y (2005) A new functional fertilizer containing 5-aminolevulinic acid promoted hydroponically-grown vegetables in the Netherlands. Acta Hort 697:351–355

    CAS  Google Scholar 

  • Jannin L, Arkoun M, Etienne P, Laine P, Goux D, Garnica M, Fuentes M, San Francisco M, Baigorri R, Cruz F, Houdusse F, Gracia-Mina J, Yvin J, Ourry A (2012) Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul 32:31–52

    Google Scholar 

  • Jia C, Yu X, Zhang M, Liu Z, Zou P, Ma J, Xu Y (2019) Application of melatonin-enhanced tolerance to high-temperature stress in cherry radish (Raphanus sativus L. var. radculus pers). J Plant Growth Regul. https://doi.org/10.1007/s00344-019-10006-1

  • Jithesh MN, Shukla PS, Kant P, Joshi J, Critchley AT, Prithiviraj B (2019) Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in Arabidopsis by regulating the expression of stress responsive genes. J Plant Growth Regul 38:463–478

    CAS  Google Scholar 

  • Jonytiene V, Burbulis N, Kupriene R, Blinstrubiene A (2012) Effect of exogenous proline and de-acclimation treatment on cold tolerance in Brassica napus shoots cultured in vitro. J Food Agric Environ 10:327–330

    CAS  Google Scholar 

  • Kałużewicz A, Krzesiński W, Spiżewski T, Zaworska A (2017) Effect of biostimulants on several physiological characteristics and chlorophyll content under drought stress and re-watering. Not Bot Hortic Agrobot 45:197–202

    Google Scholar 

  • Kałużewicz A, Bączek-Kwinta R, Krzesiński W, Spiżewski T, Zaworska A (2018) Effect of biostimulants on chlorophyll fluorescence parameters of broccoli (Brassica oleracea var. italica) under drought stress and rewatering. Acta Sci Pol Hortorum Cultus 17:97–106

    Google Scholar 

  • Khan MN, Zhang J, Luo T, Liu J, Rizwan M, Fahad S, Xu Z, Hu L (2019) Seed priming with melatonin coping drought stress in rapeseed by regulating reactive oxygen species detoxification: antioxidant defense system, osmotic adjustment, stomatal traits and chloroplast ultrastructure perseveration. Ind Crops Prod 140:111597. https://doi.org/10.1016/j.indcrop.2019.111597

    Article  CAS  Google Scholar 

  • Kocira S (2019) Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chil J Agr Res 79:17–25

    Google Scholar 

  • Kumari A, Parida AK (2018) Metabolomics and network analysis reveal the potential metabolites and biological pathways involved in salinity tolerance of the halophyte Salvadora persica. Environ Exp Bot 148:85–99

    CAS  Google Scholar 

  • Kunicki E, Grabowska A, S˛ekara A, Wojciechowska R (2010) The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic 22:9–13

    Google Scholar 

  • Liu D, Pei ZF, Naeem MS, Ming DF, Liu HB, Khan F, Zhou WJ (2011) 5–Aminolevulinic acid activates antioxidative defence system and seedling growth in Brassica napus L. under water–deficit stress. J Agron Crop Sci 197:284–295

    CAS  Google Scholar 

  • Lovatt CJ (2015) Use of a natural metabolite to increase crop production. US Patent No. US 9,603,366 B2. https://patentimages.storage.googleapis.com/66/b4/72/78ab7e35f3a8da/US9603366.pdf

  • Lucini L, Rouphael Y, Cardarelli M, Canaguier R, Kumar P, Colla G (2015) The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci Hortic 182:124–133

    CAS  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Fujita M (2017a) Relative tolerance of different species of Brassica to cadmium toxicity: coordinated role of antioxidant defense and glyoxalase systems. Plant Omics 10:107–117

    Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain MS, Fujita M (2017b) γ-aminobutyric acid (GABA) confers chromium stress tolerance in Brassica juncea L. by modulating the antioxidant defense and glyoxalase systems. Ecotoxicology 26:675–690

    PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Rahman A, Hossain SM, Fujita M (2017c) Maleic acid assisted improvement of metal chelation and antioxidant metabolism confers chromium tolerance in Brassica juncea L. Ecotoxicol Environ Saf 144:216–226

    PubMed  Google Scholar 

  • Mahmud JA, Hasanuzzaman M, Nahar K, Bhuyan MHMB, Fujita M (2018) Insights into citric acid-induced cadmium tolerance and phytoremediation in Brassica juncea L.: coordinated functions of metal chelation, antioxidant defense and glyoxalase systems. Ecotoxicol Environ Saf 147:990–1001

    CAS  PubMed  Google Scholar 

  • Mahmud JA, Bhuyan MHMB, Anee TI, Nahar K, Fujita M, Hasanuzzaman M (2019) Reactive oxygen species metabolism and antioxidant defense in plants under metal/metalloid stress. In: Hasanuzzaman M, Hakeem KR, Nahar K, Alharby HF (eds) Plant abiotic stress tolerance. Switzerland, Springer, Cham., pp 221–257

    Google Scholar 

  • Mariani L, Ferrante A (2017) Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae 3:52. https://doi.org/10.3390/horticulturae3040052

    Article  Google Scholar 

  • Martinez-Esteso MJ, Vilella-Antón M, Sellés-Marchart S, Martínez-Márquez A, Botta-Català A, Piñol-Dastis R, Bru-Martínez R (2016) A DIGE proteomic analysis of wheat flag leaf treated with TERRA-SORB® foliar, a free amino acid high content biostimulant. J Integr OMICS 6:9–17

    Google Scholar 

  • Mohsin SM, Hasanuzzaman M, Bhuyan MHMB, Parvin K, Fujita M (2019) Exogenous tebuconazole and trifloxystrobin regulates reactive oxygen species metabolism toward mitigating salt-induced damages in cucumber seedling. Plants 8:428. https://doi.org/10.3390/plants8100428

    Article  CAS  PubMed Central  Google Scholar 

  • Mou B (2011) Improvement of horticultural crops for abiotic stress tolerance: an introduction. Hort Science 46:1068–1069

    Google Scholar 

  • Moud AM, Maghsoudi K (2008) Salt stress effects on respiration and growth of germinated seeds of different wheat (Triticum aestivum L.) cultivars. World J Agric Sci 4:351–358

    Google Scholar 

  • Naeem MS, Rasheed M, Liu D, Jin ZL, Ming DF, Yoneyama K, Takeuchi Y, Zhou WJ (2011) 5-Aminolevulinic acid ameliorates salinity-induced metabolic, water-related and biochemical changes in Brassica napus L. Acta Physiol Plant 33:517–528

    CAS  Google Scholar 

  • Nahar K, Hasanuzzaman M, Alam MM, Fujita M (2015) Roles of exogenous glutathione in antioxidant defense system and methylglyoxal detoxification during salt stress in mung bean. Biol Plant 59:745–756

    CAS  Google Scholar 

  • Navarro-León E, Albacete A, Torre-Gonzáleza A, Ruiz JM, Blascoa B (2016) Phytohormone profile in Lactuca sativa and Brassica oleracea plants grown under Zn deficiency 130:85–89

    Google Scholar 

  • Petrozza A, Santaniello A, Summerer S, Di Tommaso G, Di Tommaso D, Paparelli E, Piaggesi A, Perata P, Cellini F (2014) Physiological responses to Megafol® treatments in tomato plants under drought stress: a phenomic and molecular approach. Sci Hortic 174:185–192

    CAS  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  PubMed  Google Scholar 

  • Pichyangkura R, Chadchawan S (2015) Biostimulant activity of chitosan in horticulture. Sci Hortic 196:49–65

    CAS  Google Scholar 

  • Przybysz A, Gawronska H, Gajc-wolska J (2014) Biological mode of action of a nitrophenolates-based biostimulant: case study. Front Plant Sci 5:713. https://doi.org/10.3389/fpls.2014.00713

    Article  PubMed  PubMed Central  Google Scholar 

  • Rastall RA, Gibson GR (2015) Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health. Curr Opin Biotechnol 32:42–46

    CAS  PubMed  Google Scholar 

  • Rayirath P, Benkel B, Hodges DM, Allan-Wojtas P, MacKinnon S, Critchley AT, Prithiviraj B (2009) Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 230:135–147

    CAS  PubMed  Google Scholar 

  • Ren X-M, Guo S-J, Tian W, Chen Y, Han H, Chen E, Li B-L, Li Y-Y, Chen Z-J (2019) Effects of Plant Growth-Promoting Bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in cu-contaminated agricultural soil. Front Microbiol 10:1455. https://doi.org/10.3389/fmicb.2019.01455

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, De Pascale S, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

    Google Scholar 

  • Ruzzi M, Aroca R (2015) Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Sci Hortic 196:124–134

    CAS  Google Scholar 

  • Santaniello A, Giorgi FM, Di Tommaso D, Di Tommaso G, Piaggesi A, Perata P (2013) Genomic approaches to unveil the physiological pathways activated in Arabidopsis treated with plant-derived raw extracts. Acta Hortic 1009:161–174

    Google Scholar 

  • Sarwat M, Hashem A, Ahanger M.A, Abd_Allah EF, Alqarawi AA, Alyemeni MN, Ahmad P, Gucel S (2016) Mitigation of NaCl stress by arbuscular mycorrhizal fungi through the modulation of osmolytes, antioxidants and secondary metabolites in mustard (Brassica juncea L.) plants. Front Plant Sci 7: 869. https://doi.org/10.3389/fpls.2016.00869

  • Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81

    CAS  Google Scholar 

  • Sayyad-Amin P, Jahansooz MR, Borzouei A, Ajili F (2016) Changes in photosynthetic pigments and chlorophyll-a fluorescence attributes of sweet-forage and grain sorghum cultivars under salt stress. J Biol Phys 42:601–620

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala L, Mackay A, Tian Y, Jacobsen S-E, Zhou D, Shabala S (2012) Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiol Plant 146:26–38

    CAS  PubMed  Google Scholar 

  • Shahrekizad M, Gholamalizadeh AA, Mir N (2015) EDTA-coated Fe3O4 nanoparticles: a novel biocompatible fertilizer for improving agronomic traits of sunflower (Helianthus annuus). J Nanostruct 5:117–127

    Google Scholar 

  • Shakoor MB, Ali S, Hameed A, Farid M, Hussain S, Yasmeen T et al (2014) Citric acid improves lead (Pb) phytoextraction in Brassica napus L. by mitigating Pb-induced morphological and biochemical damages. Ecotoxicol Environ Saf 109:38–47

    PubMed  Google Scholar 

  • Sharma A, Li X, Lim YP (2014) Comparative genomics of Brassicaceae crops. Breed Sci 64:3–13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shubha K, Mukherjee A, Kumari M, Tiwari K, Meena VS (2017) Bio-stimulants: an approach towards the sustainable vegetable production. In: Meena V, Mishra P, Bisht J, Pattanayak A (eds) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 259–277

    Google Scholar 

  • Singhal P, Jan AT, Azam M, Haq QMR (2016) Plant abiotic stress: a prospective strategy of exploiting promoters as alternative to overcome the escalating burden. Front Life Sci 9:52–63

    CAS  Google Scholar 

  • Sofo A, Nuzzaci M, Vitti A, Tataranni G, Scopa A (2014) Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms. In: Ahmad P, Wani MR, Azooz MM, Phan Tran LS (eds) Improvement of crops in the era of climatic changes. Springer, New York, US, pp 107–11

    Google Scholar 

  • Thomas AL, Guerreiro SM, Sodek L (2005) Aerenchyma formation and recovery from hypoxia of the flooded root system of nodulated soybean. Ann Bot 96:1191–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian S, Lu L, Xie R, Zhang M, Jernstedt J, Hou D, Ramsier C, Brown P (2015) Supplemental macronutrients and microbial fermentation products improve the uptake and transport of foliar applied zinc in sunflower (Helianthus annuus L.) plants. Studies utilizing micro X-ray florescence. Front Plant Sci 5:808. https://doi.org/10.3389/fpls.2014.00808

  • Toscano S, Romano D, Massa D, Bulgari R, Franzoni G, Ferrante A (2019) Biostimulant applications in low input horticultural cultivation systems. Italus Hortus 25:27–36

    Google Scholar 

  • Traon D, Amat L, Zotz F, du Jardin P (2014) A legal framework for plant biostimulants and agronomic fertiliser additives in the EU. Report to the European Commission, DG Enterprise & Industry, Arcadia International, p 115

    Google Scholar 

  • Ullah F, Bano A, Nosheen A (2012) Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pak J Bot 44:1873–1880

    CAS  Google Scholar 

  • Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:5. https://doi.org/10.1186/s40538-017-0089-5

    Article  CAS  Google Scholar 

  • Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2020) Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: implication of nitric oxide. J Hazard Mater  390:121806.

    Article  Google Scholar 

  • Wang H, Wang H, Shao H, Tang X (2016) Recent advances in utilizing transcription factors to improve plant abiotic stress tolerance by transgenic technology. Front Plant Sci 7:67. https://doi.org/10.3389/fpls.2016.00067

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani AS, Ahmad A, Hayat S, Tahir I (2016) Is foliar spray of proline sufficient for mitigation of salt stress in Brassica juncea cultivars? Environ Sci Pollut Res 23:13413–13423

    CAS  Google Scholar 

  • Warwick SI, Francis A, Al-Shehbaz IA (2006) Brassicaceae: species checklist and database on CD-ROM. Plant Syst Evol 259:249–258

    Google Scholar 

  • Xu C, Mou B (2016) Responses of spinach to salinity and nutrient deficiency in growth, physiology, and nutritional value. J Am Soc Hortic Sci 141:12–21

    CAS  Google Scholar 

  • Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7:2049. https://doi.org/10.3389/fpls.2016.02049

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamauchi Y (2018) Integrated chemical control of abiotic stress tolerance using biostimulants. In: Andjelkovic V (ed) Plant, abiotic stress and responses to climate change. InTech Open, Rijeka, pp 133–143

    Google Scholar 

  • Yildrim E, Donmez MF, Turan M (2008) Use of bioinoculants in ameliorative effects on radish plants under salinity stress. J Plant Nutr 31:2059–2074

    CAS  Google Scholar 

  • Yu M, Chen GY (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springerplus 2:245. https://doi.org/10.1186/2193-1801-2-245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaheer IE, Ali S, Rizwan M, Farid M, Shakoor MB, Gill RA et al (2015) Citric acid assisted phytoremediation of copper by Brassica napus L. Ecotoxicol Environ Saf 120:310–317

    CAS  PubMed  Google Scholar 

  • Zhao G, Zhao Y, Yu X, Kiprotich F, Han H, Guan R, Wang R, Shen W (2018) Nitric oxide is required for melatonin-enhanced tolerance against salinity stress in rapeseed (Brassica napus L.) seedlings. Int J Mol Sci 19:1912. https://doi.org/10.3390/ijms19071912

  • Zou X, Hu C, Zeng L, Cheng Y, Xu M, Zhang X (2014) A comparison of screening methods to identify waterlogging tolerance in the field in Brassica napus L. during Plant Ontogeny. PLoS ONE 9: e89731. https://doi.org/10.1371/journal.pone.0089731

Download references

Acknowledgements

We thank Abdul Awal Chowdhury Masud, Lecturer, Department of Agronomy and Tasnim Farha Bhuiyan, Lecturer, Department of Agricultural Botany for assisting in collecting secondary data for writing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Borhannuddin Bhuyan, M.H.M., Mohsin, S.M., Mahmud, J.A., Hasanuzzaman, M. (2020). Use of Biostimulants for Improving Abiotic Stress Tolerance in Brassicaceae Plants. In: Hasanuzzaman, M. (eds) The Plant Family Brassicaceae. Springer, Singapore. https://doi.org/10.1007/978-981-15-6345-4_19

Download citation

Publish with us

Policies and ethics