Skip to main content

Next-Generation Rapid Advanced Molecular Diagnostics of COVID-19 by CRISPR-Cas

  • Chapter
  • First Online:
Diagnostic Strategies for COVID-19 and other Coronaviruses

Abstract

The world is looking towards the development of early diagnosis, treatment, and prevention of Coronavirus disease (COVID-19) caused by SARS-CoV-2 in order to restrict its rapid transmission and mortality among the human population. Globally, more than 5 million cases have been reported with 0.3 million deaths by the end of May 2020. Currently, the World Health Organization (WHO) adopted the screening and diagnosis of SARS-CoV-2 infection with quantitative RT-PCR (qRT-PCR)-based kits; however, the suitability of such kits is restricted due to the requirement of specialized instruments, well-trained personnel, and unavailability in resource-limited areas. The CRISPR-Cas system has recently emerged as a versatile tool for medical research for gene editing, epigenetic control, and disease diagnosis. The use of CRISPR-Cas-based detection of SARS-CoV-2 infection may results in the development of rapid, affordable, and multiplexed point-of-care diagnostic system with high specificity and sensitivity. In this article, we have covered the CRISPR-Cas-based efficient techniques developed for the diagnosis of the SARS-CoV-2 and their suitability for COVID-19 surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CARMEN:

Combinatorial Arrayed Reactions for Multiplexed Evaluation of Nucleic acids

Cas:

CRISPR-associated proteins

CASLFA:

Clustered Regularly Interspaced Short Palindromic Repeats/Cas9-Mediated Lateral Flow Nucleic Acid Assay

COVID-19:

Coronavirus disease

CRISPR:

Clustered regularly interspaced short palindromic repeats

dCas9:

Nuclease-deactivated Cas9

FELUDA:

FnCas9 Editor-Linked Uniform Detection Assay

FnCas9:

Francisella novicida Cas9

HEPN:

Higher eukaryotes and prokaryotes nucleotide-binding domain

HOLMES:

One-hour low-cost multipurpose highly efficient system

HUDSON:

Heating unextracted diagnostic samples to obliterate nucleases

LAMP:

Loop-mediated isothermal amplification

NASBACC:

Nucleic acid sequence-based amplification-CRISPR cleavage

NHEJ:

Non-homologous end joining

Nsp:

Non-structural proteins

PAM:

Protospacer adjacent motif

PC:

Paired dCas9

RCA:

Rolling circle amplification

RCH:

RCA-CRISPR-split-HRP

RPA:

Recombinase polymerase amplification

RT-qPCR:

Quantitative polymerase chain reaction

SARS-CoV-2:

Severe Acute Respiratory Syndrome Coronavirus 2

sgRNA:

Single guide RNA

SHERLOCK:

Specific high sensitivity enzymatic reporter unlocking

SpCas9:

Streptococcus pyogenes Cas9

References

  • Abudayyeh OO, Gootenberg JS, Konermann S et al (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

    Article  Google Scholar 

  • Ackerman CM, Myhrvold C, Thakku SG, et al. (2020) Massively multiplexed nucleic acid detection with Cas13 [published online ahead of print, 2020 Apr 29]. Nature https://doi.org/10.1038/s41586-020-2279-8

  • Azhar A, Phutela R, Ansari AH et al (2020) Rapid, field-deployable nucleobase detection and identification using FnCas9. bioRxiv. https://doi.org/10.1101/2020.04.07.028167

  • Bai J, Lin H, Li H, Zhou Y, Liu J, Zhong G (2019) Cas12a-based on-site and rapid nucleic acid detection of African swine fever. Front Microbiol 10(10):2830

    Article  Google Scholar 

  • Broughton JP, Deng X, Yu G, et al. (2020) CRISPR-Cas12-based detection of SARS-CoV-2 [published online ahead of print, 2020 Apr 16]. Nat Biotechnol https://doi.org/10.1038/s41587-020-0513-4

  • Cascella M, Rajnik M, Cuomo A, et al. (2020) Features, evaluation and treatment Coronavirus (COVID-19). In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL)

    Google Scholar 

  • Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA (2018) CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360(6387):436–439

    Article  CAS  Google Scholar 

  • Corman VM, Landt O, Kaiser M et al (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 25(3):2000045

    Article  Google Scholar 

  • Gootenberg JS, Abudayyeh OO, Lee JW et al (2017) Nucleic acid detection with CRISPR-Cas13a/C2c2. Science (New York, NY) 356(6336):438–442

    Article  CAS  Google Scholar 

  • Helmy YA, Fawzy M, Elaswad A, Sobieh A, Kenney SP, Shehata AA (2020) The COVID-19 pandemic: a comprehensive review of taxonomy, genetics, epidemiology, diagnosis, treatment, and control. J Clin Med 9(4):1225

    Article  CAS  Google Scholar 

  • Hirano S, Nishimasu H, Ishitani R, Nureki O (2016) Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell 61(6):886–894

    Article  CAS  Google Scholar 

  • Huang Z, Tian D, Liu Y et al (2020) Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosens Bioelectron 23:112316

    Article  Google Scholar 

  • Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F (2020) SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc 15(3):1311

    Article  CAS  Google Scholar 

  • Khailany RA, Safdar M, Ozaslan M (2020) Genomic characterization of a novel SARS-CoV-2 [published online ahead of print, 2020 Apr 16]. Gene Rep 19:100682

    Article  Google Scholar 

  • Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK (2020a) Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virus 31:13–21

    Article  Google Scholar 

  • Kumar S, Nyodu R, Maurya VK, Saxena SK (2020b) Morphology, genome organization, replication, and pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In Coronavirus disease 2019 (COVID-19). Springer, Singapore, pp 23–31

    Google Scholar 

  • Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP, Wang J (2018) CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res 28:491–493

    Article  CAS  Google Scholar 

  • Li L, Li S, Wu N, Wu J, Wang G, Zhao G, Wang J (2019a) HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol 8(10):2228–2237

    Article  CAS  Google Scholar 

  • Li Y, Li S, Wang J, Liu G (2019b) CRISPR/Cas systems towards next-generation biosensing. Trends Biotechnol 37:730–743

    Article  Google Scholar 

  • Liu L, Chen P, Wang M, Li X, Wang J, Yin M et al (2017) C2c1-sgRNA complex structure reveals RNA-guided DNA cleavage mechanism. Mol Cell 65:310–322

    Article  CAS  Google Scholar 

  • Miao F, Zhang J, Li N, Chen T, Wang L, Zhang F (2019) Rapid and sensitive recombinase polymerase amplification combined with lateral flow strip for detecting african swine fever virus. Front Microbiol 15:1004

    Article  Google Scholar 

  • Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:63

    Article  Google Scholar 

  • Pardee K, Green A, Takahashi MK, Braff D et al (2016) Rapid, low-cost detection of zika virus using programmable biomolecular components. Cell 165:1255–1266

    Article  CAS  Google Scholar 

  • Park GS, Ku K, Baek SH, Kim SJ, Kim SI, Kim BT, Maeng JS (2020) Development of reverse transcription loop-mediated isothermal amplification assays targeting SARS-CoV-2. J Mol Diagn S1525–1578:30090–30098

    Google Scholar 

  • PDB ID: 5B2O, Hirano H, Gootenberg JS, Horii T et al (2016) Structure and engineering of Francisella novicida Cas9. Cell 164:950–961

    Article  Google Scholar 

  • PDB: 5XWY, Liu L, Li X, Ma J et al (2017) The molecular architecture for RNA-guided RNA cleavage by Cas13a. Cell 170:714–726.e10

    Article  Google Scholar 

  • PDB: 6GTC, Stella S, Mesa P, Thomsen J et al (2018) Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175:1856–1871.e21

    Article  Google Scholar 

  • Rauch JN, Valois E, Solley SC et al (2020) A scalable, easy-to-deploy, protocol for cas13-based detection of SARS-CoV-2 genetic material. bioRxiv. https://doi.org/10.1101/2020.04.20.052159

  • Rostron P, Pennance T, Bakar F et al (2019) Development of a recombinase polymerase amplification (RPA) fluorescence assay for the detection of Schistosoma haematobium. Parasit Vectors 12:514

    Article  Google Scholar 

  • Smargon AA, Shi YJ, Yeo GW (2020) RNA-targeting CRISPR systems from metagenomic discovery to transcriptomic engineering. Nat Cell Biol 22:143–150

    Article  CAS  Google Scholar 

  • Swarts DC, van der Oost J, Jinek M (2017) Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell 66:221–233e4

    Article  CAS  Google Scholar 

  • Stella S, Mesa P, Thomsen J, Paul B, Alcón P, Jensen SB, Saligram B, Moses ME, Hatzakis NS, Montoya G (2018) Conformational activation promotes CRISPR-Cas12a catalysis and resetting of the endonuclease activity. Cell 175(7):1856–1871.e21

    Article  CAS  Google Scholar 

  • Wang X, Xiong E, Tian T et al (2020a) Clustered regularly interspaced short palindromic repeats/Cas9-mediated lateral flow nucleic acid assay. ACS Nano 4:2497–2508

    Article  Google Scholar 

  • Wang R, Zhao X, Chen X et al (2020b) Rolling circular amplification (RCA)-assisted CRISPR/Cas9 cleavage (RACE) for highly specific detection of multiple extracellular vesicle MicroRNAs. Anal Chem 92:2176–2185

    Article  CAS  Google Scholar 

  • Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338

    Article  CAS  Google Scholar 

  • Yan F, Wang W, Zhang J (2019) CRISPR-Cas12 and Cas13: the lesser known siblings of CRISPR-Cas9. Cell Biol Toxicol 35:489–492

    Article  Google Scholar 

  • Yinhua Zhang NO, Xiong J, Sun L et al (2020) Rapid molecular detection of sars-cov-2 (covid-19) virus RNA using colorimetric LAMP. medRxiv. https://doi.org/10.1101/2020.02.26.20028373

  • Yu L, Wu S, Hao X et al (2020) Rapid detection of COVID-19 coronavirus using a reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) diagnostic platform [published online ahead of print, 2020 Apr 21]. Clin Chem:hvaa102

    Google Scholar 

  • Zhang F, Abudayyeh OO, Gootenberg JS. (2020) A protocol for detection of COVID-19 using CRISPR diagnostics. A protocol for detection of COVID-19 using CRISPR diagnostics. p 8

    Google Scholar 

  • Zhou L, Peng R, Zhang R, Li J (2018a) The applications of CRISPR/Cas system in molecular detection. J Cell Mol Med 22:5807–5815

    Article  CAS  Google Scholar 

  • Zhou W, Hu L, Ying L et al (2018b) A CRISPR–Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection. Nat Commun 9:5012

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailendra K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srivastava, A., Gupta, T., Kumar, S., Saxena, S.K. (2020). Next-Generation Rapid Advanced Molecular Diagnostics of COVID-19 by CRISPR-Cas. In: Chandra, P., Roy, S. (eds) Diagnostic Strategies for COVID-19 and other Coronaviruses. Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore. https://doi.org/10.1007/978-981-15-6006-4_9

Download citation

Publish with us

Policies and ethics