Skip to main content

Advanced Biosensing Methodologies for Ultrasensitive Detection of Human Coronaviruses

  • Chapter
  • First Online:
Book cover Diagnostic Strategies for COVID-19 and other Coronaviruses

Abstract

Rapid diagnosis of infectious diseases and up-to-the-minute commencement of relevant treatments are important factors that not only promote positive changes in the clinical scenario but also the health of the mass at large. Surpassing the time-consuming conventional, straightforward in vitro methods for diagnosing infectious diseases, biosensors have shown their tremendous potential in the recent era. Current developments concerning biosensing technologies bring point-of-care diagnostics to the forefront. This proves to be advantageous over conventional practices that demand centralized laboratory facilities, experienced personnel, and colossal machinery. Currently, the infectious pandemic caused by the spreading of the novel coronavirus has created an unprecedented adverse effect on both the global economy and health security. The current situation of growing cases of infection despite several measures and the unavailability of testing kits to diagnose every suspected case point toward the need of urgent upgradation of the conventional diagnostic approaches to advanced, robust, and cost-effective diagnosis. Increasing demand in viral vigilance and directive regulatory steps toward the disease transmission also reveals the need for rapid as well as sensitive devices for viral diagnosis. From the last several decades, biosensors for their noteworthy sensitivity and specificity have been considered as a promising and potent tool for precise and quantifiable detection of viruses. Current developments in genetic engineering inclusive the genetic manipulation and material engineering have introduced several approaches to enhance sensitivity, selectivity, and the overall recognition efficiency of biosensors. This chapter presents an overview of the biosensing methodologies, especially focusing on various labeled and label-free techniques that have been used in the past and are being reported in the recent era for diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad-Valle P, Fernández-Abedul MT, Costa-García A (2005) Genosensor on gold films with enzymatic electrochemical detection of a SARS virus sequence. In: Biosensors and bioelectronics. https://doi.org/10.1016/j.bios.2004.10.019

  • Baranwal A, Chandra P (2018) Clinical implications and electrochemical biosensing of monoamine neurotransmitters in body fluids, in vitro, in vivo, and ex vivo models. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2018.09.002

  • Baranwal A, Mahato K, Srivastava A, Maurya PK, Chandra P (2016) Phytofabricated metallic nanoparticles and their clinical applications. RSC Adv. https://doi.org/10.1039/c6ra23411a

  • Ben-Assa N, Naddaf R, Gefen T, Capucha T, Hajjo H, Mandelbaum N, Elbaum L, Rogov P, King DA, Kaplan S, Rotem A, Chowers M, Szwarcwort-Cohen M, Paul M, Geva-Zatorsky N (2020) SARS-CoV-2 on-the-spot virus detection directly from patients. medRxiv. https://doi.org/10.1101/2020.04.22.20072389

  • Bhatnagar I, Mahato K, Ealla KKR, Asthana A, Chandra P (2018) Chitosan stabilized gold nanoparticle mediated self-assembled gliP nanobiosensor for diagnosis of invasive Aspergillosis. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.12.084

  • Byrne B, Stack E, Gilmartin N, O’Kennedy R (2009) Antibody-based sensors: principles, problems and potential for detection of pathogens and associated toxins. Sensors (Switzerland). https://doi.org/10.3390/s90604407

  • Chandra P (2013) Miniaturized multiplex electrochemical biosensor in clinical bioanalysis. J Bioanal Biomed. https://doi.org/10.4172/1948-593X.1000e122

  • Chandra P (2016) Nanobiosensors for personalized and onsite biomedical diagnosis. Nanobiosens Pers Onsite Biomed Diagn. https://doi.org/10.1049/PBHE001E

  • Chandra P (2020) Miniaturized label-free smartphone assisted electrochemical sensing approach for personalized COVID-19 diagnosis. Sens Int. https://doi.org/10.1016/j.sintl.2020.100019

  • Chandra P, Das D, Abdelwahab AA (2010) Gold nanoparticles in molecular diagnostics and therapeutics. Dig J Nanomater Biostruct 5:363–367

    Google Scholar 

  • Chandra P, Tan YN, Singh SP (2017) Next generation point-of-care biomedical sensors technologies for cancer diagnosis. Next Gener Point-of-care Biomed Sens Technol Cancer Diagn. https://doi.org/10.1007/978-981-10-4726-8

  • Chang YF, Chen RC, Lee YJ, Chao SC, Su LC, Li YC, Chou C (2009) Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2008.08.019

  • Choudhary M, Yadav P, Singh A, Kaur S, Ramirez-Vick J, Chandra P, Arora K, Singh SP (2016) CD 59 targeted ultrasensitive electrochemical immunosensor for fast and noninvasive diagnosis of oral cancer. Electroanalysis 28:2565–2574

    Article  CAS  Google Scholar 

  • Chow CB (2004) Post-SARS infection control in the hospital and clinic. Paediatr Respir Rev. https://doi.org/10.1016/j.prrv.2004.07.006

  • Chua AL, Yean CY, Ravichandran M, Lim BH, Lalitha P (2011) A rapid DNA biosensor for the molecular diagnosis of infectious disease. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2011.02.040

  • Coleman CM, Frieman MB (2015) Growth and quantification of MERS-CoV infection. Curr Protoc Microbiol. https://doi.org/10.1002/9780471729259.mc15e02s37

  • Cooper MA (2009) Label-free biosensors: techniques and applications. https://doi.org/10.1017/CBO9780511626531

  • Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DGJC, Haagmans BL, Van Der Veer B, Van Den Brink S, Wijsman L, Goderski G, Romette JL, Ellis J, Zambon M, Peiris M, Goossens H, Reusken C, Koopmans MPG, Drosten C (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eur Secur. https://doi.org/10.2807/1560-7917.ES.2020.25.3.2000045

  • Cotten M, Watson SJ, Kellam P, Al-Rabeeah AA, Makhdoom HQ, Assiri A, Aal-Tawfiq J, Alhakeem RF, Madani H, AlRabiah FA, Al Hajjar S, Al-Nassir WN, Albarrak A, Flemban H, Balkhy HH, Alsubaie S, Palser AL, Gall A, Bashford-Rogers R, Rambaut A, Zumla AI, Memish ZA (2013) Transmission and evolution of the Middle East respiratory syndrome coronavirus in Saudi Arabia: a descriptive genomic study. Lancet. https://doi.org/10.1016/S0140-6736(13)61887-5

  • Dai C, Choi S (2013) Technology and applications of microbial biosensor. Open J Appl Biosens. https://doi.org/10.4236/ojab.2013.23011

  • Daniels JS, Pourmand N (2007) Label-free impedance biosensors: opportunities and challenges. Electroanalysis. https://doi.org/10.1002/elan.200603855

  • Donnelly CA, Malik MR, Elkholy A, Cauchemez S, Van Kerkhove MD (2019) Worldwide reduction in MERS cases and deaths since 2016. Emerg Infect Dis. https://doi.org/10.3201/eid2509.190143

  • Fauci AS, Morens DM (2012) The perpetual challenge of infectious diseases. N Engl J Med. https://doi.org/10.1056/NEJMra1108296

  • França RFO, Da Silva CC, De Paula SO (2013) Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases. Eur J Clin Microbiol Infect Dis. https://doi.org/10.1007/s10096-013-1813-0

  • Gogna A, Tay KH, Tan BS (2014) Severe acute respiratory syndrome: 11 years later – a radiology perspective. Am J Roentgenol. https://doi.org/10.2214/AJR.14.13062

  • Gui M, Liu X, Guo D, Zhang Z, Yin CC, Chen Y, Xiang Y (2017) Electron microscopy studies of the coronavirus ribonucleoprotein complex. Protein Cell. https://doi.org/10.1007/s13238-016-0352-8

  • Hamimi A (2016) MERS-CoV: Middle East respiratory syndrome corona virus: can radiology be of help? Initial single center experience. Egypt J Radiol Nucl Med. https://doi.org/10.1016/j.ejrnm.2015.11.004

  • Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, Myers L (2020) Radiology perspective of coronavirus disease 2019 (COVID-19): lessons from severe acute respiratory syndrome and Middle East respiratory syndrome. AJR Am J Roentgenol. https://doi.org/10.2214/AJR.20.22969

  • Hsieh BY, Chang YF, Ng MY, Liu WC, Lin CH, Wu HT, Chou C (2007) Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles. Anal Chem. https://doi.org/10.1021/ac0624389

  • Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, Hajduk P, Mack J, Fesik SW, Olejniczak ET (2004) Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry. https://doi.org/10.1021/bi036155b

  • Hui DSC, Chan MCH, Wu AK, Ng PC (2004) Severe acute respiratory syndrome (SARS): epidemiology and clinical features. Postgrad Med J 80:373 LP–373381. https://doi.org/10.1136/pgmj.2004.020263

    Article  Google Scholar 

  • Hunt HK, Armani AM (2010) Label-free biological and chemical sensors. Nanoscale. https://doi.org/10.1039/c0nr00201a

  • Ishikawa FN, Chang H, Curreli M, Liao H, Olson ÐŒCA, Chen P, Zhang R, Roberts RW, Sun R, Cote ÐŒRJ, Thompson ME, Zhou C (2009) Label-free, electrical detection of the SARS virus N-protein with nanowire capture probes. ACS Nano

    Google Scholar 

  • Janissen R, Sahoo PK, Santos CA, Da Silva AM, Von Zuben AAG, Souto DEP, Costa ADT, Celedon P, Zanchin NIT, Almeida DB, Oliveira DS, Kubota LT, Cesar CL, Souza APD, Cotta MA (2017) InP nanowire biosensor with tailored Biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett. https://doi.org/10.1021/acs.nanolett.7b01803

  • Jardon M, Mohammad SF, Jude CM, Pahwa A (2019) Imaging of emerging infectious diseases. Curr Radiol Rep. https://doi.org/10.1007/s40134-019-0338-4

  • Ju H, Zhang X, Wang J (2011) Signal amplification for Nanobiosensing. https://doi.org/10.1007/978-1-4419-9622-0_2

  • Kashish BS, Jyoti A, Mahato K, Chandra P, Prakash R (2017) Highly sensitive in vitro biosensor for Enterotoxigenic Escherichia coli detection based on ssDNA anchored on PtNPs-chitosan Nanocomposite. Electroanalysis. https://doi.org/10.1002/elan.201600169

  • Kilianski A, Mielech AM, Deng X, Baker SC (2013) Assessing activity and inhibition of Middle East respiratory syndrome coronavirus papain-like and 3C-like proteases using luciferase-based biosensors. J Virol. https://doi.org/10.1128/jvi.02105-13

  • Knobler S, Mahmoud A, Lemon S, Mack A, Sivitz L, Oberholtzer K (2004) Learning from SARS: preparing for the next disease outbreak. The National Academies Press, Washington

    Google Scholar 

  • Kogaki H, Uchida Y, Fujii N, Kurano Y, Miyake K, Kido Y, Kariwa H, Takashima I, Tamashiro H, Ling AE, Okada M (2005) Novel rapid immunochromatographic test based on an enzyme immunoassay for detecting nucleocapsid antigen in SARS-associated coronavirus. J Clin Lab Anal. https://doi.org/10.1002/jcla.20070

  • Kumar A, Purohit B, Maurya PK, Pandey LM, Chandra P (2019a) Engineered nanomaterial assisted signal-amplification strategies for enhancing analytical performance of electrochemical biosensors. Electroanalysis. https://doi.org/10.1002/elan.201900216

  • Kumar A, Purohit B, Mahato K, Mandal R, Srivastava A, Chandra P (2019b) Gold-iron bimetallic nanoparticles impregnated reduced Graphene oxide based Nanosensor for label-free detection of biomarker related to non-alcoholic fatty liver disease. Electroanalysis. https://doi.org/10.1002/elan.201900337

  • Kumar A, Roy S, Srivastava A, Naikwade MM, Purohit B, Mahato K, Naidu VGM, Chandra P (2019c) Chapter 10 – Nanotherapeutics: a novel and powerful approach in modern healthcare system. Nanotechnol Mod Anim Biotechnol. https://doi.org/10.1016/B978-0-12-818823-1.00010-7

  • Kurstjens S, van der Horst A, Herpers R, Geerits MWL, Kluiters-de Hingh YCM, Göttgens E-L, Blaauw MJT, Thelen MHM, Elisen MGLM, Kusters R (2020) Rapid identification of SARS-CoV-2-infected patients at the emergency department using routine testing. https://doi.org/10.1101/2020.04.20.20067512

  • Lau SKP, Woo PCY, Wong BHL, Tsoi HW, Woo GKS, Poon RWS, Chan KH, Wei WI, Malik Peiris JS, Yuen KY (2004) Detection of severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in SARS patients by enzyme-linked immunosorbent assay. J Clin Microbiol. https://doi.org/10.1128/JCM.42.7.2884-2889.2004

  • Layqah LA, Eissa S (2019) An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta. https://doi.org/10.1007/s00604-019-3345-5

  • Lee E-Y, Ko HL, Jung S-Y, Nam J-H (2017) Development of a rapid diagnostic kit for antigen and antibody of Middle East respiratory syndrome coronavirus. J Immunol

    Google Scholar 

  • Li D, Wang D, Dong J, Wang N, Huang H, Xu H, Xia C (2020a) False-negative results of real-time reverse-transcriptase polymerase chain reaction for severe acute respiratory syndrome coronavirus 2: role of deep-learning-based ct diagnosis and insights from two cases. Korean J Radiol. https://doi.org/10.3348/kjr.2020.0146

  • Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W, Zhang Y, Wang J, Huang B, Lin Y, Yang J, Cai W, Wang X, Cheng J, Chen Z, Sun K, Pan W, Zhan Z, Chen L, Ye F (2020b) Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol. https://doi.org/10.1002/jmv.25727

  • Lin YC, Dong SL, Yeh YH, Wu YS, Lan GY, Liu CM, Chu TC (2005) Emergency management and infection control in a radiology department during an outbreak of severe acute respiratory syndrome. Br J Radiol. https://doi.org/10.1259/bjr/17161223

  • Liu J, Chen X, Wang Q, Xiao M, Zhong D, Sun W, Zhang G, Zhang Z (2019) Ultrasensitive monolayer MoS 2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. https://doi.org/10.1021/acs.nanolett.8b03818

  • Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D (2020) Research and Development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. https://doi.org/10.1021/acscentsci.0c00272

  • Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev. https://doi.org/10.1039/c3cs60077g

  • Mahato K, Chandra P (2019) Paper-based miniaturized immunosensor for naked eye ALP detection based on digital image colorimetry integrated with smartphone. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2018.12.006

  • Mahato K, Baranwal A, Srivastava A, Maurya PK, Chandra P (2018a) Smart materials for biosensing applications. In: Pawar PM, Ronge BP, Balasubramaniam R, Seshabhattar S (eds) Techno-societal 2016. Springer International Publishing, Cham, pp 421–431

    Chapter  Google Scholar 

  • Mahato K, Kumar S, Srivastava A, Maurya PK, Singh R, Chandra P (2018b) Electrochemical immunosensors: fundamentals and applications in clinical diagnostics. In: Handbook of immunoassay technologies. https://doi.org/10.1016/B978-0-12-811762-0.00014-1

    Chapter  Google Scholar 

  • Mahato K, Maurya PK, Chandra P (2018c) Fundamentals and commercial aspects of nanobiosensors in point-of-care clinical diagnostics. 3 Biotech. https://doi.org/10.1007/s13205-018-1148-8

  • Mahato K, Purohit B, Bhardwaj K, Jaiswal A, Chandra P (2019) Novel electrochemical biosensor for serotonin detection based on gold nanorattles decorated reduced graphene oxide in biological fluids and in vitro model. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111502

  • Mahato K, Purohit B, Kumar A, Chandra P (2020a) Paper-based biosensors for clinical and biomedical applications: emerging engineering concepts and challenges. In: Comprehensive analytical chemistry. https://doi.org/10.1016/bs.coac.2020.02.001

    Chapter  Google Scholar 

  • Mahato K, Purohit B, Kumar A, Chandra P (2020b) Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered au-nano-Dendroids and graphene oxide nanocomposite. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2019.111815

  • Matsuyama S, Nao N, Shirato K, Kawase M, Saito S, Takayama I, Nagata N, Sekizuka T, Katoh H, Kato F, Sakata M, Tahara M, Kutsuna S, Ohmagari N, Kuroda M, Suzuki T, Kageyama T, Takeda M (2020) Enhanced isolation of SARS-CoV-2 by TMPRSS2- expressing cells. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.2002589117

  • Mejía-Salazar JR, Oliveira ON (2018) Plasmonic biosensing. Chem Rev. https://doi.org/10.1021/acs.chemrev.8b00359

  • Memish ZA, Perlman S, Van Kerkhove MD, Zumla A (2020) Middle East respiratory syndrome. Lancet. https://doi.org/10.1016/S0140-6736(19)33221-0

  • Mohan R, Mach KE, Bercovici M, Pan Y, Dhulipala L, Wong PK, Liao JC (2011) Clinical validation of integrated nucleic acid and protein detection on an electrochemical biosensor array for urinary tract infection diagnosis. PLoS One. https://doi.org/10.1371/journal.pone.0026846

  • Nasir MU, Roberts J, Muller NL, Macri F, Mohammed MF, Akhlaghpoor S, Parker W, Eftekhari A, Rezaei S, Mayo J, Nicolaou S (2020) The role of emergency radiology in COVID-19: from preparedness to diagnosis. Can Assoc Radiol J. https://doi.org/10.1177/0846537120916419

  • Ozili PK, Arun T (2020) Spillover of COVID-19: impact on the global economy. SSRN Electron J. https://doi.org/10.2139/ssrn.3562570

  • Pan Y, Long L, Zhang D, Yan T, Cui S, Yang P, Wang Q, Ren S (2020) Potential false-negative nucleic acid testing results for severe acute respiratory syndrome coronavirus 2 from thermal inactivation of samples with low viral loads. Clin Chem. https://doi.org/10.1093/clinchem/hvaa091

  • Pejcic B, De Marco R, Parkinson G (2006) The role of biosensors in the detection of emerging infectious diseases. Analyst. https://doi.org/10.1039/b603402k

  • Polizzi KM (2019) Biosensors. In: Comprehensive biotechnology. https://doi.org/10.1016/B978-0-444-64046-8.00060-4

    Chapter  Google Scholar 

  • Prasad A, Mahato K, Maurya PK, Chandra P (2016) Biomaterials for biosensing applications. J Anal Bioanal Tech. https://doi.org/10.4172/2155-9872.1000e124

  • Purohit B, Kumar A, Mahato K, Chandra P (2019a) Novel sensing assembly comprising engineered gold dendrites and MWCNT-AuNPs Nanohybrid for acetaminophen detection in human urine. Electroanalysis. https://doi.org/10.1002/elan.201900551

  • Purohit B, Kumar A, Mahato K, Roy S, Chandra P (2019b) Cancer cytosensing approaches in miniaturized settings based on advanced nanomaterials and biosensors. In: Nanotechnology in modern animal biotechnology: concepts and applications. https://doi.org/10.1016/B978-0-12-818823-1.00009-0

    Chapter  Google Scholar 

  • Purohit B, Mahato K, Kumar A, Chandra P (2019c) Sputtering enhanced peroxidase like activity of a dendritic nanochip for amperometric determination of hydrogen peroxide in blood samples. Microchim Acta. https://doi.org/10.1007/s00604-019-3773-2

  • Purohit B, Kumar A, Mahato K, Chandra P (2020a) Smartphone-assisted personalized diagnostic devices and wearable sensors. Curr Opin Biomed Eng. https://doi.org/10.1016/j.cobme.2019.08.015

  • Purohit B, Kumar A, Mahato K, Chandra P (2020b) Electrodeposition of metallic nanostructures for biosensing applications in health care. J Sci Res. https://doi.org/10.37398/jsr.2020.640109

  • Qiu G, Gai Z, Tao Y, Schmitt J, Kullak-Ublick GA, Wang J (2020) Dual-functional Plasmonic Photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano. https://doi.org/10.1021/acsnano.0c02439

  • Rapp BE, Gruhl FJ, Länge K (2010) Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem. https://doi.org/10.1007/s00216-010-3906-2

  • Seo G, Lee G, Kim MJ, Baek S-H, Choi M, Ku KB, Lee C-S, Jun S, Park D, Kim HG, Kim S-J, Lee J-O, Kim BT, Park EC, Kim SI (2020) Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. https://doi.org/10.1021/acsnano.0c02823

  • Shen M, Zhou Y, Ye J, Abdullah AL-maskri AA, Kang Y, Zeng S, Cai S (2020) Recent advances and perspectives of nucleic acid detection for coronavirus. J Pharm Anal. https://doi.org/10.1016/j.jpha.2020.02.010

  • Sin ML, Mach KE, Wong PK, Liao JC (2014) Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn. https://doi.org/10.1586/14737159.2014.888313

  • Vaddiraju S, Tomazos I, Burgess DJ, Jain FC, Papadimitrakopoulos F (2010) Emerging synergy between nanotechnology and implantable biosensors: a review. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2009.12.001

  • Web Refereces 1. https://www.sinobiological.com/research/virus/2019-ncov-antigen

  • Wu HS, Chiu SC, Tseng TC, Lin SF, Lin JH, Hsu YF, Wang MC, Lin TL, Yang WZ, Ferng TL, Huang KH, Hsu LC, Lee LL, Yang JY, Chen HY, Su SP, Yang SY, Lin TH, Su IJ (2004) Serologic and molecular biologic methods for SARS-associated coronavirus infection. Taiwan Emerg Infect Dis. https://doi.org/10.3201/eid1002.030731

  • Wu D, Wu T, Liu Q, Yang Z (2020) The SARS-CoV-2 outbreak: what we know. Int J Infect Dis. https://doi.org/10.1016/j.ijid.2020.03.004

  • Xiao AT, Tong YX, Zhang S (2020) False-negative of RT-PCR and prolonged nucleic acid conversion in COVID-19: rather than recurrence. J Med Virol. https://doi.org/10.1002/jmv.25855

  • Yu J, Ding N, Chen H, Liu XJ, Pu ZH, Xu HJ, Lei Y, Zhang HW (2020) Loopholes in current infection control and prevention practices against COVID-19 in radiology department and improvement suggestions. Can Assoc Radiol J. https://doi.org/10.1177/0846537120916852

  • Zumla A, Hui DS, Perlman S (2015) Middle East respiratory syndrome. Lancet. https://doi.org/10.1016/S0140-6736(15)60454-8

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, S., Baranwal, A., Purohit, B., Roy, S., Mahto, S.K., Chandra, P. (2020). Advanced Biosensing Methodologies for Ultrasensitive Detection of Human Coronaviruses. In: Chandra, P., Roy, S. (eds) Diagnostic Strategies for COVID-19 and other Coronaviruses. Medical Virology: From Pathogenesis to Disease Control. Springer, Singapore. https://doi.org/10.1007/978-981-15-6006-4_2

Download citation

Publish with us

Policies and ethics