Skip to main content

New Insights into the Regulatory Role of lncRNA, circRNA, piRNAs, and ceRNAs in Ischemic Stroke

  • Chapter
  • First Online:
IschemiRs: MicroRNAs in Ischemic Stroke

Abstract

The past decade witnessed a paradigm shift of attention from a protein-centric approach to RNA centric approach in understanding the complexity of multi-factorial diseases like ischemic stroke. Thus, marking the beginning of a new class of non-protein-coding genes, exemplified by the intense research on microRNA, in human physiology and disease. However, microRNAs are just the beginning of a whole new world of non-coding RNAs (ncRNAs), with unexplored limitless functionalities. These ncRNAs are emerging as prominent regulators of gene expression and as a potential therapeutic modality in various disease pathologies including but not limited to cancer, neurological, and cardiovascular diseases. Here, we look upon some relevant ncRNAs: long non-coding RNAs (lncRNAs), PIWI-interacting RNAs (piRNAs), circular RNAs (circRNAs), and others, their molecular interaction and therapeutic potential in the context of stroke pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wright MW, Bruford EAJHG (2011) Naming ‘junk’: human non-protein coding RNA (ncRNA) gene nomenclature. Hum Genomics 5(2):90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miska EA (2005) How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15(5):563–568

    Article  CAS  PubMed  Google Scholar 

  3. Carthew RW (2006) Gene regulation by microRNAs. Curr Opin Genet Dev 16(2):203–208

    Article  CAS  PubMed  Google Scholar 

  4. Kosik KS (2006) The neuronal microRNA system. Nat Rev Neurosci 7(12):911–920

    Article  CAS  PubMed  Google Scholar 

  5. Khoshnam SE et al (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166–187

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hayes J, Peruzzi PP, Lawler S (2014) MicroRNAs in cancer: biomarkers, functions and therapy. Trends Mol Med 20(8):460–469

    Article  CAS  PubMed  Google Scholar 

  7. Fatica A, Bozzoni I (2014) Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet 15(1):7–21

    Article  CAS  PubMed  Google Scholar 

  8. Haque S, Harries LW (2017) Circular RNAs (circRNAs) in health and disease. Genes (Basel) 8(12):353

    Article  CAS  Google Scholar 

  9. Ozata DM et al (2019) PIWI-interacting RNAs: small RNAs with big functions. Nat Rev Genet 20(2):89–108

    Article  CAS  PubMed  Google Scholar 

  10. Rybak-Wolf A et al (2015) Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell 58(5):870–885

    Article  CAS  PubMed  Google Scholar 

  11. Chen W, Schuman E (2016) Circular RNAs in brain and other tissues: a functional enigma. Trends Neurosci 39(9):597–604

    Article  CAS  PubMed  Google Scholar 

  12. van Rossum D, Verheijen BM, Pasterkamp RJ (2016) Circular RNAs: novel regulators of neuronal development. Front Mol Neurosci 9:74

    PubMed  PubMed Central  Google Scholar 

  13. You X et al (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iyengar BR et al (2014) Non-coding RNA interact to regulate neuronal development and function. Front Cell Neurosci 8:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Yang Y et al (2018) Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis. J Natl Cancer Inst 110(3):djx166

    Article  CAS  Google Scholar 

  16. Zhu J et al (2017) Differential expression of circular RNAs in glioblastoma multiforme and its correlation with prognosis. Transl Oncol 10(2):271–279

    Article  PubMed  PubMed Central  Google Scholar 

  17. Millan MJ (2017) Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: an integrative review. Prog Neurobiol 156:1–68

    Article  CAS  PubMed  Google Scholar 

  18. Bao MH et al (2018) Long non-coding RNAs in ischemic stroke. Cell Death Dis 9(3):281

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Quinn JJ, Chang HY (2016) Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet 17(1):47–62

    Article  CAS  PubMed  Google Scholar 

  20. Shi J et al (2017) Long non-coding RNA in glioma: signaling pathways. Oncotarget 8(16):27582–27592

    Article  PubMed  PubMed Central  Google Scholar 

  21. Long FQ et al (2018) LncRNA SNHG12 ameliorates brain microvascular endothelial cell injury by targeting miR-199a. Neural Regen Res 13(11):1919–1926

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu X et al (2016) The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: mediated by miR-181b-12/15-LOX signaling pathway. Front Cell Neurosci 10:201

    PubMed  PubMed Central  Google Scholar 

  23. Yan H et al (2017) Long non-coding RNA MEG3 functions as a competing endogenous RNA to regulate ischemic neuronal death by targeting miR-21/PDCD4 signaling pathway. Cell Death Dis 8(12):3211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Yan H et al (2016) Long noncoding RNA MEG3 activation of p53 mediates ischemic neuronal death in stroke. Neuroscience 337:191–199

    Article  CAS  PubMed  Google Scholar 

  25. Guo D et al (2017) Down-regulation of Lncrna MALAT1 attenuates neuronal cell death through suppressing Beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem 43(1):182–194

    Article  CAS  PubMed  Google Scholar 

  26. Zhong Y, Yu C, Qin W (2018) LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p /ROCK1. Cancer Gene Ther 26(7–8):1

    Google Scholar 

  27. Qi X et al (2017) Long non-coding RNA SNHG14 promotes microglia activation by regulating miR-145-5p/PLA2G4A in cerebral infarction. Neuroscience 348:98–106

    Article  CAS  PubMed  Google Scholar 

  28. Wu Z et al (2017) LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol 54(10):7670–7685

    Article  CAS  PubMed  Google Scholar 

  29. Yang X, Zi XH (2019) LncRNA SNHG1 alleviates OGD induced injury in BMEC via miR-338/HIF-1alpha axis. Brain Res 1714:174–181

    Article  CAS  PubMed  Google Scholar 

  30. Liu J et al (2017) Downregulation of the long non-coding RNA Meg3 promotes angiogenesis after ischemic brain injury by activating notch signaling. Mol Neurobiol 54(10):8179–8190

    Article  CAS  PubMed  Google Scholar 

  31. Deng QW et al (2018) Differential long noncoding RNA expressions in peripheral blood mononuclear cells for detection of acute ischemic stroke. Clin Sci (Lond) 132(14):1597–1614

    Article  CAS  Google Scholar 

  32. Zhang L et al (2018) LncRNA SNHG1 regulates cerebrovascular pathologies as a competing endogenous RNA through HIF-1alpha/VEGF signaling in ischemic stroke. J Cell Biochem 119(7):5460–5472

    Article  CAS  PubMed  Google Scholar 

  33. Wang PL et al (2014) Circular RNA is expressed across the eukaryotic tree of life. PLoS One 9(6):e90859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Holdt LM, Kohlmaier A, Teupser D (2018) Molecular roles and function of circular RNAs in eukaryotic cells. Cell Mol Life Sci 75(6):1071–1098

    Article  CAS  PubMed  Google Scholar 

  35. Rong D et al (2017) An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget 8(42):73271–73281

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hanan M, Soreq H, Kadener S (2017) CircRNAs in the brain. RNA Biol 14(8):1028–1034

    Article  PubMed  Google Scholar 

  37. Liu C et al (2017) Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 8(49):86535–86547

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin SP et al (2016) Circular RNA expression alterations are involved in OGD/R-induced neuron injury. Biochem Biophys Res Commun 471(1):52–56

    Article  CAS  PubMed  Google Scholar 

  39. Bai Y et al (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38(1):32–50

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang X et al (2018) Downregulation of circ_008018 protects against cerebral ischemia-reperfusion injury by targeting miR-99a. Biochem Biophys Res Commun 499(4):758–764

    Article  CAS  PubMed  Google Scholar 

  41. Han B et al (2018) Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy 14(7):1164–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Halic M, Moazed D (2009) Transposon silencing by piRNAs. Cell 138(6):1058–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Beyret E, Liu N, Lin H (2012) piRNA biogenesis during adult spermatogenesis in mice is independent of the ping-pong mechanism. Cell Res 22(10):1429–1439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luteijn MJ, Ketting RF (2013) PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat Rev Genet 14(8):523–534

    Article  CAS  PubMed  Google Scholar 

  45. Phay M, Kim HH, Yoo S (2018) Analysis of piRNA-like small non-coding RNAs present in axons of adult sensory neurons. Mol Neurobiol 55(1):483–494

    Article  CAS  PubMed  Google Scholar 

  46. Dharap A, Nakka VP, Vemuganti R (2011) Altered expression of PIWI RNA in the rat brain after transient focal ischemia. Stroke 42(4):1105–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

G. K., R., Gressens, P., Nampoothiri, S.S., Surendran, G., Bokobza, C. (2020). New Insights into the Regulatory Role of lncRNA, circRNA, piRNAs, and ceRNAs in Ischemic Stroke. In: IschemiRs: MicroRNAs in Ischemic Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-15-4798-0_9

Download citation

Publish with us

Policies and ethics