Skip to main content

microRNA Regulation of Ischemic Stroke Inflammatory and Immune Response

  • Chapter
  • First Online:
IschemiRs: MicroRNAs in Ischemic Stroke

Abstract

Ischemic stroke is one leading cause of death worldwide, and inflammation has been extensively associated with its ontogeny and subsequent brain lesions. MicroRNAs (miRs) are non-coding RNA molecules that specifically repress gene expression post-transcriptionally. Several miRs have been correlated with innate immune response, and evidence accumulating suggests miRs regulatory role during stroke-related neuroinflammation. The use of miRs as a potential neuroprotective target for ischemic stroke is increasingly being considered as a result of this build-up knowledge. In this chapter, our communication focuses on the identification of miRs linked to neuroinflammatory ontogeny associated with ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson W, Onuma O, Owolabi M, Sachdev S (2016) Stroke: a global response is needed. Bull World Health Organ 94(9):634–634A

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ao LY, Yan YY, Zhou L, Li CY, Li WT, Fang WR, Li YM (2018) Immune cells after ischemic stroke onset: roles, migration, and target intervention. J Mol Neurosci 66(3):342–355

    Article  CAS  PubMed  Google Scholar 

  3. Thounaojam MC, Kaushik DK, Basu A (2013) MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Mol Neurobiol 47(3):1034–1044

    Article  CAS  PubMed  Google Scholar 

  4. Ouyang YB, Xu L, Yue S, Liu S, Giffard RG (2014) Neuroprotection by astrocytes in brain ischemia: importance of microRNAs. Neurosci Lett 565:53–58

    Article  CAS  PubMed  Google Scholar 

  5. Hollins SL, Cairns MJ (2016) MicroRNA: small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 143:61–81

    Article  CAS  PubMed  Google Scholar 

  6. Danka Mohammed CP, Park JS, Nam HG, Kim K (2017) MicroRNAs in brain aging. Mech Ageing Dev 168:3–9

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Morris-Blanco KC, Lopez MS, Yang T, Zhao H, Vemuganti R, Luo Y (2018) Impact of microRNAs on ischemic stroke: from pre- to post-disease. Prog Neurobiol 163–164:59–78

    Article  PubMed  CAS  Google Scholar 

  8. Cowan C, Muraleedharan CK, O’Donnell JJ 3rd, Singh PK, Lum H, Kumar A, Xu S (2014) MicroRNA-146 inhibits thrombin-induced NF-κB activation and subsequent inflammatory responses in human retinal endothelial cells. Invest Ophthalmol Vis Sci 55(8):4944–4951

    Article  CAS  PubMed  Google Scholar 

  9. Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B, Liu D (2014) microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One 9(6):e99283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shi R, Zhou X, Ji WJ, Zhang YY, Ma YQ, Zhang JQ, Li YM (2015) The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. Biomed Res Int 2015:981841

    PubMed  PubMed Central  Google Scholar 

  11. Tian HS, Zhou QG, Shao F (2015) Relationship between arterial atheromatous plaque morphology and platelet-associated miR-126 and miR-223 expressions. Asian Pac J Trop Med 8(4):309–314

    Article  CAS  PubMed  Google Scholar 

  12. Balia C, Giordano M, Scalise V, Neri T, Fontanini G, Basolo F, Celi A, Pedrinelli R (2017) miR-19a and miR-20a and tissue factor expression in activated human peripheral blood mononuclear cells. Thrombosis 2017:1076397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y (2015) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46(2):513–519

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Zhao F, Yu X, Lu X, Zheng G (2015) MicroRNA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med 35(6):1708–1714

    Article  CAS  PubMed  Google Scholar 

  15. Liu NN, Dong ZL, Han LL (2018) MicroRNA-410 inhibition of the TIMP2-dependent MAPK pathway confers neuroprotection against oxidative stress-induced apoptosis after ischemic stroke in mice. Brain Res Bull 143:45–57

    Article  CAS  PubMed  Google Scholar 

  16. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A 105(5):1516–1521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 13(1):287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Zhou X, Su S, Li S, Pang X, Chen C, Li J, Liu J (2016) MicroRNA-146a down-regulation correlates with neuroprotection and targets pro-apoptotic genes in cerebral ischemic injury in vitro. Brain Res 1648(Pt A):136–143

    Article  CAS  PubMed  Google Scholar 

  19. Bernstein DL, Zuluaga-Ramirez V, Gajghate S, Reichenbach NL, Polyak B, Persidsky Y, Rom S (2019) miR-98 reduces endothelial dysfunction by protecting blood-brain barrier (BBB) and improves neurological outcomes in mouse ischemia/reperfusion stroke model. J Cereb Blood Flow Metab. https://doi.org/10.1177/0271678X19882264

  20. Dong H, Cui B, Hao X (2019) MicroRNA-22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol Med Rep 20(1):735–744

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ma Q, Li G, Tao Z, Wang J, Wang R, Liu P, Luo Y, Zhao H (2019) Blood microRNA-93 as an indicator for diagnosis and prediction of functional recovery of acute stroke patients. J Clin Neurosci 62:121–127

    Article  CAS  PubMed  Google Scholar 

  22. Cheng HY, Wang YS, Hsu PY, Chen CY, Liao YC, Juo SH (2019) miR-195 has a potential to treat ischemic and hemorrhagic stroke through neurovascular protection and neurogenesis. Mol Ther Methods Clin Dev 13:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang J, Xu Z, Chen X, Li Y, Chen C, Wang C, Zhu J, Wang Z, Chen W, Xiao Z, Xu R (2018) MicroRNA-182-5p attenuates cerebral ischemia-reperfusion injury by targeting toll-like receptor 4. Biochem Biophys Res Commun 505(3):677–684

    Article  CAS  PubMed  Google Scholar 

  24. Lv B, Cheng X, Sharp FR, Ander BP, Liu DZ (2018) MicroRNA-122 mimic improves stroke outcomes and indirectly inhibits NOS2 after middle cerebral artery occlusion in rats. Front Neurosci 12:767

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fang R, Zhao NN, Zeng KX, Wen Q, Xiao P, Luo X, Liu XW, Wang YL (2018) MicroRNA-544 inhibits inflammatory response and cell apoptosis after cerebral ischemia reperfusion by targeting IRAK4. Eur Rev Med Pharmacol Sci 22(17):5605–5613

    CAS  PubMed  Google Scholar 

  26. Yoo H, Kim J, Lee AR, Lee JM, Kim OJ, Kim JK, Oh SH (2019) Alteration of microRNA 340-5p and Arginase-1 expression in peripheral blood cells during acute ischemic stroke. Mol Neurobiol 56(5):3211–3221

    Article  CAS  PubMed  Google Scholar 

  27. Li G, Ma Q, Wang R, Fan Z, Tao Z, Liu P, Zhao H, Luo Y (2018) Diagnostic and immunosuppressive potential of elevated Mir-424 levels in circulating immune cells of ischemic stroke patients. Aging Dis 9(2):172–181

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang L, Ma Q, Li Y, Li B, Zhang L (2018) Inhibition of microRNA-210 suppresses pro-inflammatory response and reduces acute brain injury of ischemic stroke in mice. Exp Neurol 300:41–50

    Article  CAS  PubMed  Google Scholar 

  29. Zhao H, Li G, Ma Q, Tao Z, Wang R, Fan Z, Feng Y, Ji X, Luo Y (2017) MicroRNA-99a-5p in circulating immune cells as a potential biomarker for the early diagnosis of ischemic stroke. Brain Circ 3(1):21–28

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kuosmanen SM, Kansanen E, Sihvola V, Levonen AL (2017) MicroRNA profiling reveals distinct profiles for tissue-derived and cultured endothelial cells. Sci Rep 7(1):10943

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tiwari A, Mukherjee B, Dixit M (2018) MicroRNA key to angiogenesis regulation: MiRNA biology and therapy. Curr Cancer Drug Targets 18(3):266–277

    Article  CAS  PubMed  Google Scholar 

  32. Suarez Y, Wang C, Manes TD, Pober JS (2010) Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 184(1):21–25

    Article  CAS  PubMed  Google Scholar 

  33. Dzoljic E, Grbatinic I, Kostic V (2015) Why is nitric oxide important for our brain? Funct Neurol 30(3):159–163

    PubMed  PubMed Central  Google Scholar 

  34. Srivastava K, Bath PM, Bayraktutan U (2012) Current therapeutic strategies to mitigate the eNOS dysfunction in ischaemic stroke. Cell Mol Neurobiol 32(3):319–336

    Article  CAS  PubMed  Google Scholar 

  35. Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB, Roitbak T (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhao H, Wang J, Gao L, Wang R, Liu X, Gao Z, Tao Z, Xu C, Song J, Ji X, Luo Y (2013) MiRNA-424 protects against permanent focal cerebral ischemia injury in mice involving suppressing microglia activation. Stroke 44(6):1706–1713

    Article  CAS  PubMed  Google Scholar 

  37. Manicone AM, McGuire JK (2008) Matrix metalloproteinases as modulators of inflammation. Semin Cell Dev Biol 19(1):34–41

    Article  CAS  PubMed  Google Scholar 

  38. Liang L, Wang J, Yuan Y, Zhang Y, Liu H, Wu C, Yan Y (2018) MicRNA-320 facilitates the brain parenchyma injury via regulating IGF-1 during cerebral I/R injury in mice. Biomed Pharmacother 102:86–93

    Article  CAS  PubMed  Google Scholar 

  39. Sharp FR, Xu H, Lit L, Walker W, Apperson M, Gilbert DL, Glauser TA, Wong B, Hershey A, Liu DZ, Pinter J, Zhan X, Liu X, Ran R (2006) The future of genomic profiling of neurological diseases using blood. Arch Neurol 63(11):1529–1536

    Article  PubMed  Google Scholar 

  40. Bronisz A, Godlewski J, Wallace JA, Merchant AS, Nowicki MO, Mathsyaraja H, Srinivasan R, Trimboli AJ, Martin CK, Li F, Yu L, Fernandez SA, Pecot T, Rosol TJ, Cory S, Hallett M, Park M, Piper MG, Marsh CB, Yee LD, Jimenez RE, Nuovo G, Lawler SE, Chiocca EA, Leone G, Ostrowski MC (2011) Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14(2):159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yan W, Zhang W, Sun L, Liu Y, You G, Wang Y, Kang C, You Y, Jiang T (2011) Identification of MMP-9 specific microRNA expression profile as potential targets of anti-invasion therapy in glioblastoma multiforme. Brain Res 1411:108–115

    Article  CAS  PubMed  Google Scholar 

  42. Ni J, Wang X, Chen S, Liu H, Wang Y, Xu X, Cheng J, Jia J, Zhen X (2015) MicroRNA let-7c-5p protects against cerebral ischemia injury via mechanisms involving the inhibition of microglia activation. Brain Behav Immun 49:75–85

    Article  CAS  PubMed  Google Scholar 

  43. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK, Johnson JM, Sina JF, Fare TL, Sistare FD, Glaab WE (2009) Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 55(11):1977–1983

    Article  CAS  PubMed  Google Scholar 

  44. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat Med 17(1):64–70

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Li YJ, Wu XY, Hong Z, Wei WS (2015) MicroRNA-181c negatively regulates the inflammatory response in oxygen-glucose-deprived microglia by targeting toll-like receptor 4. J Neurochem 132(6):713–723

    Article  CAS  PubMed  Google Scholar 

  46. Yuan X, Chen J, Dai M (2016) Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-kappaB pathway. Int J Mol Med 38:1871–1878

    Article  CAS  PubMed  Google Scholar 

  47. Rom S, Dykstra H, Zuluaga-Ramirez V, Reichenbach NL, Persidsky Y (2015) miR-98 and let-7g∗ protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 35:1957–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xiang W, Tian C, Peng S, Zhou L, Pan S, Deng Z (2017) Let-7i attenuates human brain microvascular endothelial cell damage in oxygen glucose deprivation model by decreasing toll-like receptor 4 expression. Biochem Biophys Res Commun 493:788–793

    Article  CAS  PubMed  Google Scholar 

  49. Lu Y, Huang Z, Hua Y, Xiao G (2018) Minocycline promotes BDNF expression of N2a cells via inhibition of miR-155-mediated repression after oxygen-glucose deprivation and reoxygenation. Cell Mol Neurobiol 38:1305–1313

    Article  CAS  PubMed  Google Scholar 

  50. Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, KingRobson J et al (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28:2551–2565

    Article  CAS  PubMed  Google Scholar 

  51. Liu Y, Pan Q, Zhao Y, He C, Bi K, Chen Y et al (2015) MicroRNA-155 regulates ROS production, NO generation, apoptosis and multiple functions of human brain microvessel endothelial cells under physiological and pathological conditions. J Cell Biochem 116:2870–2881

    Article  CAS  PubMed  Google Scholar 

  52. Maitrias P, Metzinger-Le Meuth V, Nader J, Reix T, Caus T, Metzinger L (2017) The involvement of miRNA in carotid-related stroke. Arterioscler Thromb Vasc Biol 37:1608–1617

    Article  CAS  PubMed  Google Scholar 

  53. Staszel T, Zapala B, Polus A, Sadakierska-Chudy A, Kiec-Wilk B, Stepien E et al (2011) Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn 121:361–366

    CAS  PubMed  Google Scholar 

  54. Rivera A, Vanzulli I, Butt AM (2016) A central role for ATP signalling in glial interactions in the CNS. Curr Drug Targets 17(16):1829–1833

    Article  CAS  PubMed  Google Scholar 

  55. Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates microRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Parisi C, Arisi I, D’Ambrosi N, Storti AE, Brandi R, D’Onofrio M, Volonte C (2013) Dysregulated microRNAs in amyotrophic lateral sclerosis microglia modulate genes linked to neuroinflammation. Cell Death Dis 4:e959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL (2011) MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med 17(1):64–70

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Y, Shan Z, Zhao Y, Ai Y (2019) Sevoflurane prevents miR-181a-induced cerebral ischemia/reperfusion injury. Chem Biol Interact 308:332–338

    Article  CAS  PubMed  Google Scholar 

  59. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS (2012) The microRNA miR-181c controls microglia-mediated neuronal apoptosis by suppressing tumor necrosis factor. J Neuroinflammation 9:211

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang L, Dong LY, Li YJ, Hong Z, Wei WS (2012) miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia 60(12):1888–1895

    Article  PubMed  Google Scholar 

  61. Zhao F, Qu Y, Wang H, Huang L, Zhu J, Li S, Tong Y, Zhang L, Li J, Mu D (2017) The effect of miR-30d on apoptosis and autophagy in cultured astrocytes under oxygen-glucose deprivation. Brain Res 1671:67–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajanikant G. K. .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

G. K., R., Gressens, P., Nampoothiri, S.S., Surendran, G., Bokobza, C. (2020). microRNA Regulation of Ischemic Stroke Inflammatory and Immune Response. In: IschemiRs: MicroRNAs in Ischemic Stroke. Springer, Singapore. https://doi.org/10.1007/978-981-15-4798-0_4

Download citation

Publish with us

Policies and ethics